

• •

065

The Open University of Sri Lanka B.Sc Degree Programme Level 05 - Final Examination 2007/2008 Pure Mathematics

PMU 3292/PME 5292 - Group Theory and Transformation - Paper I

Duration :- 2 1/2 Hours.

Date: 29-12-2007.

Time: - 9.30 am. - 12.00 noon.

Answer FOUR questions only.

- 1.(a) Prove that the set of the six special bilinear mappings $f_1, f_2, f_3, f_4, f_5, f_6$ defined by $f_1(z) = z, f_2(z) = \frac{1}{z}, f_3(z) = 1 z, f_4(z) = \frac{z}{z-1}, f_5(z) = \frac{1}{1-z}, f_6(z) = \frac{z-1}{z}$ of the infinite complex plane into itself is a finite non-abelian group of order 6.
 - (b) If (G, o) is group, then prove the followings
 - (i) The identity element of G is unique.
 - (ii) Every $a \in G$ has a unique inverse, a^{-1} in G.
- 02. Show that the matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}, \begin{pmatrix} \omega^2 & 0 \\ 0 & \omega \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & \omega^2 \\ \omega & 0 \end{pmatrix}, \begin{pmatrix} 0 & \omega \\ \omega^2 & 0 \end{pmatrix}$$

where $\omega^3 = 1$, $\omega \neq 1$ form a group G under the matrix multiplication. Also, obtain all abelian subgroups of this group G.

Are there any non-abelian subgroups of G? Justify your answer.

- 03. (a) A group G has the property that for each element a of G, $a^2 = e$, where e is the identity of G. Prove that G is abelian.
 - (b) A group G has independent generators a, b

such that
$$a^2 = b^2 = (ab)^2 = I$$
.

Show that G is of order 4 and construct its multiplication table.

Also, show that ab = ba.

- 04. (a) Prove that the set $\{I, (1, 2), (3, 4), (1, 2)(3, 4)\}$ is a subgroup of S_4 , where S_4 is the symmetric group on the set $\{1, 2, 3, 4\}$.
 - (b) Let G be an abelian group. Let H be the subset of G consisting of those elements $x \in G$ such that $x = x^{-1}$ that is

 $H = \{ x \in G : x = x^{-1} \}.$

Prove that H is a subgroup of G.

05. (a) If G is the group of permutations on the set $\{1, 2, 3\}$ show that

$$s = (1 \ 2 \ 3), t = (1 \ 2)$$
 satisfy the equations $s^3 = t^2 = (st)^2 = e$,

where e is the identity of G.

Show also that $st = ts^2$.

- (b) Express the following permutations as a product of disjoint cycles.
 - (i) (4 2 1 5)(3 4 2 6)(5 6 7 1)
 - (ii) (1 3 2 6)(1 2 4)(3 5).
- 06. (a) Find all the elements of $(Z_{12}, +)$ of order 2, 3, 4, 6 and 12.
 - (b) Prove that, the group (Z_{11}^*, \times) is cyclic.

Also, find all the generators of the group (Z_{11}^*, \times).