THE OPEN UNIVERSITY OF SRI LANKA

Faculty of Engineering Technology
Department of Mathematics & Philosophy of Engineering

Bachelor of Technology Honors in Engineering / Bachelor of Software Engineering Honors

Final Examination (2016/2017)
MPZ4140 /MPZ4160: Discrete Mathematics I

Date: 27th November 2017 (Monday)

Time: 9:30 am - 12:30 pm

Instruction:

- Answer only six questions.
- Please answer a total of six questions choosing at least one from each single section.
- All symbols are in standard notation and state any assumption that you made.

SECTION - A

Q1.

I. Decide which of the following are propositions:

[20%]

- a) "x + 5 > x + 3";
- b) "the cat has no five legs";
- c) "if $9 15 \neq 7$ then, 12 + 3 = 17 and 6 3 = 3";
- d) " $y \le 3$ ".
- II. State the "convers", "inverse", and "contrapositive" of each of the following statement: [30%]
 - a) If x is an even integer, then x^2 is even;
 - b) If the product of two integers x and y is odd, then both x and y are odd.
- III. Let p, q, and r be three statements. Verify that $[\sim (p \land q) \lor r] \to [p \to \sim (q \land \sim r)]$ is a tautology or not. [20%]
- IV. Let m be the proposition "Chandana passes calculus"; let n be the proposition "Chandana is happy"; and let l be the proposition "Chandana has the job." Write out the following propositions in words: [20%]
 - a) $m \rightarrow n$:
 - b) $n \to (m \land l)$;
 - c) $\sim (m \leftrightarrow n)$;
 - d) $l \vee (m \rightarrow n)$.
- V. Show that $p \lor (p \land q) \leftrightarrow p$ using laws of the algebra of propositions. [10%]

Q2. [20%] l. Give the negation of the following statements: a) $\forall x[x^2 > 0];$ b) $\exists x [2x = 1];$ c) $\forall x \exists y [x + y = 1];$ d) $\forall x \forall y [x > y \Rightarrow x^2 > y^2].$ Π. Test the validity of the following arguments: a) I study hard if and only if I get rich I rich. Therefore I study hard [15%] b) Pasindu bought a personal computer or a video cassette recorder (VCR). If he bought a VCR, then he likes to watch movies at home. He does not like to watch movies at home. [25%] Therefore Pasindu bought a personal computer. Prove De Morgan's laws for propositions by using truth tables. Ш. [10%] [30%] Prove each using the method of contradiction, IV. a) If the square of an integer is even, then the integer is even. b) $\sqrt{2}$ is an irrational number. Q3. Prove that for all integer n, n is odd if and only if n-1 is even. [20%] I. Using Mathematical induction, for a positive integer n, prove that each of the II. [45%] following: a) $7^n - 1$ is divisible by 6 for all $n \ge 1$; b) $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$. Prove directly that the product of any two odd integers is an odd integer. [15%] Ш. By giving a counter example, disprove each of the following statements: IV. a) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x - y^2 = 19.$ [10%]b) $\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ \sqrt{xy} \le \frac{(x+y)}{2}.$ [10%]

SECTION - B

O4.

I. Write down the elements in each of the following sets:

[20%]

- a) $P = \{x : |x 5| \le 6, and x \in \mathbb{Z}^+\};$
- b) $Q = \{x: x^2 + 9 = 0, x \in \mathbb{R}\};$
- c) $R = \{x: x = 1 + (-1)^n, n \in \mathbb{Z}\};$
- d) $S = \{x: x^2 + x 6 = 0, x \in \mathbb{N}\}.$
- II. Let $A = \{a, b, c, d, e, f\}, B = \{c, d, e, f, g, h\}, C = \{f, g, h, i, j, k\}$. Find [15%]
 - a) $A \setminus B$;
 - b) *A*⊕*B*;
 - c) $A \cup (B \oplus C)$.
- III. Define the Cartesian product of set A and B.

[05%]

a) $M = \{a, ab, b\}$ and $N = \{1, 12, 2\}$. Find $M \times N$ and N^2 .

[20%]

b) Let A, B and C be sets. Show that

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
.

[20%]

IV. Let A, B, C are non-empty sets. Assuming that $|A \cup B| = |A| + |B| - |A \cap B|$, show that

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|.$$
[20%]

Q5.

I. Consider the following relations defined on the set of natural numbers N. [30%]

$$R_1$$
: "x is a multiple of y";
 R_2 : " $a + 3b = 12$ ";

State whether or not each of the relations

- a) reflexive
- b) symmetric
- c) transitive
- II. Let A be a set of nonzero integers and let " \sim " be the relation on $A \times A$ define by

$$(a,b) \sim (c,d)$$
 whenever $ad = bc$.

Prove that " \sim " is an equivalence relation on A.

[35%]

III. Prove that following relation is an equivalence relation and describe the equivalence classes.

The relation
$$mR_3n \Leftrightarrow m^2 - n^2$$
 is divisible by 3 on the set \mathbb{Z} . [35%]

Q6.

I. Consider the function $f(x) = x^2 - 3x + 2$. Find

a)
$$f(x+h)$$
, [05%]

b)
$$\frac{f(x+h)-f(x)}{h}$$
 where $h \neq 0$. [10%]

a)
$$f: \mathbb{R} \to \mathbb{R}$$
 and $f(x) = |x|$. [15%]

b)
$$g: \left[0, \frac{\pi}{2}\right] \to [0, 1]$$
 and $g(x) = \sin x$. [15%]

III. Let
$$A = \mathbb{R} - \{5\}$$
 and $B = \mathbb{R} - \{\frac{2}{3}\}$. Define $f: A \to B$ by $f(x) = \frac{2x+6}{3x-15}$.

Prove that $f(x)$ is invertible and find the formula of $f^{-1}(x)$. [35%]

IV. Let
$$f(x) = ax + b$$
 and $g(x) = \frac{x - b}{a}$ on \mathbb{R} , where $a \neq 0$. Find $g \circ f$ and $f \circ g$.

SECTION - C

Q7.

- I. Given integers a, b, c, and d, prove that,
 - a) if a|b, a|c and a|d, then a|(2b+c-3d), [15%]
 - b) if a|b and b|a, then $a = \pm b$, [15%]
 - c) if a|b, then a||b|, [15%]
 - d) if a|b and b|c, then a|dc. [15%]

II. Prove that if
$$x \in \mathbb{Z}^+$$
 and $(x-1)|(x^2+3x-4)$,
then $(x^2-1)|(3x^3+12x^2-3x-12)$. [20%]

III. If
$$b$$
 ($b \ne 2$) is a prime number, show that
$$b^2 + (b+2)^2 + (b+4)^2 + 1$$
 is divisible by 12. [20%]

Q8.

I. Let $a, b, c, d \in \mathbb{Z}$. Show that

a) if
$$gcd(a, c) = gcd(b, c) = 1$$
, then $gcd(ab, c) = 1$, [20%]

b) if
$$gcd(a,b) = d$$
, then $gcd(a/d,b/d) = 1$, [10%]

c) if
$$a|c$$
 and $b|c$, with $gcd(a,b) = 1$, then $ab|c$, [20%]

II. Find the gcd(1769, 2376), and express it as

 $1769 x + 2376 y = \gcd(1769, 2376)$ by using the Euclidean Algorithm, and determine integers m and n of the following equation:

$$1769 m + 2376 n = 65. [50\%]$$

Q9.

I. Let
$$a \equiv b \pmod{n}$$
 and $b \equiv c \pmod{n}$. Show that $a \equiv c \pmod{n}$. [15%]

- II. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then show that $ac \equiv bd \pmod{m}$. [15%]
- III. Let $a \equiv b \pmod{m}$ and $n \in \mathbb{Z}^+$. The show that $a^n \equiv b^n \pmod{m}$. [20%]
- IV. Solve the following system of congruence:

$$2x \equiv 3 \pmod{5}$$

$$3x \equiv 4 \pmod{7}$$

$$5x \equiv 7 \pmod{11}$$
.

[50%]