

B.Sc. Degree Programme: Level 05

Final Examination - 2008

CSU 3275/PMU 3293/PME 5293 - Automata Theory - Paper II

Duration: Two and Half Hours.

26.06.2008

1.30 pm - 4.00 pm

Answer Four Questions Only.

- 1. i) Give the definition for state transition and output transition of a mealy machine.
 - ii) Suppose a Mealy machine is defined with the usual notation. Prove for $\forall s \in S^*$ and $i \in I^*$, $a \in I^*$,
 - a) $\delta^*(s,ai) = \delta^*(\delta^*(s,a),i)$
 - b) $\beta^*(s,ai) = \beta^*(s,a) (\beta^*(\delta^*(s,a),i))$
 - iii) Construct a DFA over $L = \{0, 1\}$ which will accept all the string in which the number of 1's is divisible by three(3).
- 2. i) Suppose M1,M2,M3 are Mealy machines and ϕ_1 , ϕ_2 are homomorphisms such that $\phi_1: M1 \to M2$ and $\phi_2: M2 \to M3$. Prove that $\phi_1: \phi_2: M1 \to M3$ is a homomorphism, where $\phi_1.\phi_2 = (\alpha, \sigma, \theta)$ and $\alpha = \alpha 2.\alpha 1, \sigma = \sigma 2.\sigma 1, \theta = \theta 1.\theta 2$.
 - ii) What do you mean by the statement that two Mealy machines are behaviorally equivalent?
 - iii) How do two behaviorally equivalent machines become a weaken homomorphism.
 - iv) If the α mapping of the machine in part iii) are given as bijective, do those two machines possess the Identity isomorphism? Justify your answer.

- 3. i) Prove, for any three Mealy machines M1, M2 and M3 where $k1: O_1 \rightarrow I_2$ $k2: O_2 \rightarrow I_3$, the following are true.
 - a) $M1 \oplus k_1(M2 \oplus k_2M3) \leq (M1 \oplus k_1M2) \oplus k_2M3$
 - b) $M1 \parallel (M2 \parallel M3) \le (M1 \parallel M2) \parallel M3$
 - ii) Suppose M1 and M2 are two Mealy machines.
 - a) Show that $(M1 || M2) \approx (M2 || M1)$.
 - b) Is $(M1 \oplus_{k_1}M2) \approx (M2 \oplus_{k_2}M1)$, where k1: $O_1 \rightarrow I_2$ and k2: $O_2 \rightarrow I_1$? Justify your answer.
- 4. i) What is meant by the term 'non trivial' in the context of decomposing two machines?
 - ii) Give the definition for SP- partitions.
 - iii) State the parallel decomposition theorem.
 - iv) State the serial decomposition theorem.
- 5. The machine M(S,I, δ , O, β) is defined as S={1,2,3,4,5,6}, I={0,1},O={a,b}. M

	er e	State transition (σ)		Output (transition $oldsymbol{eta}$
S\I	\$.	0	1	0	. 1
1	7.	2	3	a	b
2		1	3	a	b
3	* 1	4	5	b	a
4	-	3	2	a	b
5		1	6	b	a
6	1. 1. 1.	1	5	b	a

- i) Identify two SP-partitions from the above machine M.
- ii) Decompose M parallely.
- iii) Decompose M serially.

- 6.
 - i) Compare the differences of states, inputs, outputs and state/output transition between two Mealy machines in parallel and serial composition.
- ii) Following are two transition tables of M1 and M2. obtain serial and parallel composition of M1 and M2.

M1

	State	transition	Output transition		
S\I	0	1	0	1	
00	11	01	0	1	
01	11	01	1	0	
10	10	00	0	1	
11	10	00	1	0	

M2

	State transition			Output transition		
S\I	a	b	С	a	b	С
. 0	0	0	1	0	0	0
1	0	1	0	1	1	1
Ø	1	Ø	Ø	Ø	Ø	Ø

All Rights Reserved