

The Open University of Sri Lanka B.Sc. Degree Programme Final Examination 2007/2008 Pure Mathematics – Level 05 PMU3294/CSU3276– Discreet Mathematics -Paper-I

Duration: - Two & Half Hours.

Date: - 31-01-2008.

Time: - 9.30 a.m. - 12.00 noon.

Answer Four Questions Only

1. (a) Let p,q and r be the statements given below.

p: Today is Monday.

q: It is raining.

r: It is hot.

Write down each of the symbolic expressions in words.

(i)
$$(\sim p) \land (q \lor r)$$

(ii)
$$\sim (p \vee q) \wedge r$$

(iii)
$$(p \land q) \land \neg (r \lor q)$$

(b) Suppose that the universe of discourse is the set of real numbers. Let p(x, y) be the proposition ' $x \cdot y = 4$ ' and let q(x, y) be the proposition 'x > y'. Indicate which of the following propositions are true and which are false. Justify your answer.

(i)
$$p(8,0.5)$$

(ii)
$$\exists y \ p(2,y)$$

(iii)
$$\forall x \exists y \ p(x,y)$$

(iv)
$$\exists x \forall y \ p(x,y)$$

(v)
$$\forall x \forall y [p(x,y) \Rightarrow q(x,y)]$$

(vi)
$$\exists x \exists y [p(x,y) \land q(x,y)]$$

- **2.** (a) Prove that for any integer n, $n(n^2 + 5)$ is an integer multiple of 6.
 - (b) Prove by contradiction, that if x is a rational number and y is an irrational number then the sum x + y is an irrational number.

- 3. Let X be the set of all four bit strings. (eg:0011, 0101, 1000, ...) Define a relation R on X as $s_1 R s_2$ if some substring of s_1 of length 2 is equal to some substring of s_2 of length 2.
 - $(eg:_{0111}R_{1010})$ because both 0111 and 1010 contain 01. Also $_{0111}R_{0001}$ because 1110 and 0001 does not share a common substring of length 2.)

Is this relation,

- (i) reflexive?
- (ii) symmetric?
- (iii) antisymmetric?
- (iv) transitive?
- (v) a partial order?
- 4. Define an equivalence relation.
 - (a) Which of the following relations are,
 - (i) reflexive?
 - (ii) symmetric?
 - (iii) transitive?

$$R' = \{(1,1),(2,2),(2,1),(1,2),(3,2)\}$$

$$R'' = \{(1,1),(2,2),(3,3),(2,1),(1,2)(3,2),(2,3)(1,3),(3,1)\}$$

$$R''' = \{(a,b): a \equiv b \pmod{m} \ a,b \in \mathbb{Z} \text{ and } m \in \mathbb{Z}^+\}$$
Justify your answers.

- (b) Let A be a non empty set and let \sim be an equivalence relation on A. Show the following.
 - (i) $[a] \neq \phi$ for all $a \in A$.
 - (ii) $x \in [a] \Leftrightarrow [x] = [a]$ for all $a, x \in A$.
 - (iii) $[a] = [b] \Leftrightarrow a \sim b$ for all $a, b \in A$.
 - (iv) either [a] = [b] or $[a] \cap [b] = \phi$ for all $a, b \in A$.

5. (a) Let the binary operation * be defined on $A = \{a, b, c, d, e\}$ by means of the following operation table.

*	а	b	c	d	e
а	a	b	c	Ь	d
b	b	С	а	е	c
c	c	а	b	b	а
d	b	е	b	е	d
е	d	b	а	\overline{d}	c

- (ii) Is * associative? Justify your answer.
- (i) Compute ((a*c)*(e*d))*b.
- (iii) Is * commutative? Justify your answer.
- (b) Compute the following table so as to define a commutative binary operation * on $S = \{a, b, c, d\}$.

*	а	b	c	d
а	а	b	c	
b	b	d		c
c	с	а	d	b
d	d			a

- **6.** (i) Express $\{x \in \mathbb{R} : x > 2 \Rightarrow x^2 > 9\}$ using intervals.
 - (ii) Prove that there is no real number x such that x > 0 and for each $\varepsilon > 0$, $x < \varepsilon$.
 - (iii) Give an example of a nonempty set X and a relation R on X such that R is symmetric and antisymmetric.
 - (iv) Let G be a group and let $a, b \in G$ such that ab = ba. Prove that $(ab)^n = a^n b^n$ for each positive integer n.