

. [

The Open University of Sri Lanka
B.Sc. Degree Programme – Level 04
Final Exam 2008/2009
Pure Mathematics
PMU 2195/PME 4195 – Theory of Integration

Duration: - Two and Half Hours.

Date: - 16.07.2009

Time:- 10.00 a.m. - 12.30 p.m.

## Answer Four Questions Only.

01. Let 
$$f(x) = \begin{cases} 0, & x \in \mathbb{Q} \cap [0,1] \\ 1, & x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0,1] \end{cases}$$
 and  $g(x) = \begin{cases} 2, & x \in \mathbb{Q} \cap [0,1] \\ 1, & x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0,1] \end{cases}$ .

(i) Find the lower integrals;

$$\int_0^1 f(x)dx, \int_0^1 g(x)dx, \int_0^1 [f(x)+g(x)]dx.$$

(ii) Find the upper integrals;

$$\int_{0}^{1} f(x)dx, \int_{0}^{1} g(x)dx, \int_{0}^{1} [f(x)+g(x)]dx.$$

(iii) What can be said about the integrability of each of the functions f, g and f+g on [0,1]? Justify your answer.

02. (i) Let 
$$f(x) = \begin{cases} 0, & x = 0 \\ 1, & 0 < x < 1. \\ 2, & x = 1 \end{cases}$$

Use Riemann criterion to show that f is Riemann integrable on [0,1].

(ii) By dividing [1,2] into n subintervals in geometric progression at the points  $1, r, r^2, ..., r^{n-1}, 2$ , prove that  $\frac{1}{2r} \le \int_{-\infty}^{2} \frac{1}{x^2} dx \le \int_{-\infty}^{2} \frac{1}{x^2} dx \le \frac{r}{2}$ .

Deduce that 
$$\int_{-\infty}^{2} \frac{1}{x^2} dx = \frac{1}{2}.$$

03. Find each of the following limits. Show your work and state the results you use.

(i) 
$$\lim_{n\to\infty} \frac{1}{n^6} \sum_{k=1}^n (n+k)^5$$
 (ii)  $\lim_{n\to\infty} n^2 \sum_{k=1}^n \frac{1}{(n+k)^3}$ .

- 04.(i) Let f be a Riemann integrable function on [0,1] and let,  $F(x) = \int_0^x f(t)dt, \text{ for each } x \in [0,1]. \text{ Suppose } f \text{ is continuous at a point } c \in (0,1).$  Prove that F is differentiable at c and F'(c) = f(c).
  - (ii) Let g be a bounded function on [0,1]. Let  $\overline{G}(x) = \int_0^x g(t)dt$ , the upper integral of g on [0,x] for each  $x \in (0,1]$  and  $\overline{G}(0) = 0$ . Assume that  $\overline{G}$  is differentiable on [0,1] and  $\overline{G}'(x) = 1$  for each  $x \in [0,1]$ . Does it follow that g is continuous on [0,1]? Justify your answer.
- 05. (i) Prove the following inequalities.
  - (a)  $1+x \ge e^{\frac{x}{1+x}}$  for each  $x \ge 0$
  - (b)  $e^{\frac{x}{1-x}} \ge \frac{1}{1-x} \ge e^x$  for each x such that 1 > x > 0.
  - (ii) Find  $\lim_{x\to\infty} \frac{x^n}{e^{\frac{x}{n}}}$ , where  $n=10^{133}$ , stating clearly the results you use.
  - (iii) Give an example of a sequence  $(a_n)$  of positive real numbers such that for each  $k \in \mathbb{N}$ ,  $\lim_{n \to \infty} a_n^{k} = 1$ ,  $\lim_{n \to \infty} a_n^{\sqrt{n}} = 1$ , and  $\lim_{n \to \infty} a_n^{n} = 2009$ . Justify your answer.
- 06. (i) Show that each of the following integrals converge and evaluate each one of them.

(a) 
$$\int_{-1}^{1} \frac{1}{x^{\frac{1}{3}}} dx$$
 (b)  $\int_{-\infty}^{0} xe^{x} dx$ 

(ii) Discuss the convergence of each of the following integrals.

(a) 
$$\int_{-1}^{1} \frac{1}{x} dx$$
 (b)  $\int_{2}^{\infty} \frac{x^2 + 1}{x^3 + 2} dx$ 

(iii) Is the following argument correct? Justify your answer.

$$\int_{-\infty}^{\infty} (x^3 - x) dx = \lim_{R \to \infty} \int_{-R}^{R} (x^3 - x) dx$$

$$= \lim_{R \to \infty} \left[ \frac{x^4}{4} - \frac{x^2}{2} \right]_{-R}^{R}$$

$$= \lim_{R \to \infty} \left( \frac{R^4}{4} - \frac{R^2}{2} \right) - \left( \frac{(-R)^4}{4} - \frac{(-R)^2}{2} \right)$$

$$= \lim_{R \to \infty} 0$$

$$= 0.$$