

Duration: - One & Half Hours

Date: - 24-09-2010.

ψō

Time: -4.00 p.m. -5.30 p.m.

Answer All Questions.

- 01. (a) Write down the negation of each of the following statements in clear and concise English. Do not use the expression "It is not the case that" in your answers.
 - (i) "Three distinct points lying in a plane form a triangle or three distinct points lying in a plane are collinear".
 - (ii) "If a and b are odd natural numbers then ab is an odd natural number and a+b is an even natural number".
 - (b) Let p and q be two statements, by means of a truth table show that $p \wedge (-(-p \vee q)) \vee (p \wedge q)$ is logically equivalent to p.
 - (c) Determine the truth value of each of the following statements. Justify your answer.
 - (i) $\lim_{\theta \to \infty} \frac{\sin \theta}{\theta} = 1 \text{ if and only if } \sin^2 \theta + \cos^2 \theta > 1.$
 - (ii) For each $x \in \mathbb{R}$, $5^{2x} 5^{x+1} + 6 < 0$.
 - (iii) For each $x \in \mathbb{R}$, for each $y \in \mathbb{R}$, $\frac{x+y}{2} \ge \sqrt{xy}$.
- 02. Prove or disprove each of the following statements. Name the method of your proof.
 - (i) For each $n \in \mathbb{N}$, $n^2 + n + 41$ is a prime number.
 - (ii) If the product of two integers a and b is an odd natural number then a is an odd natural number and b is an odd natural number.
 - (iii) There exists $n \in \mathbb{N}$ such that 6n-1 and 6n+1 are not prime numbers.
 - (iv) For each $n \in \mathbb{N}$, $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + ... + n \cdot n! = (n+1)! 1$.

- 03. (a) Let A and B are two non-empty subsets of a universal set U, prove that $(A \times B) \cap (A \times C) = A \times (B \cap C).$
 - (b) Let R be the relation defined on \mathbb{Z} by ${}_{m}R_{n}$ if m divides n for all $m,n\in\mathbb{Z}$. Show that R is not a partial order.
 - (c) Define R on \mathbb{R} by ${}_{x}R_{y}$ if $x-y\in\mathbb{Q}$ for every $x,y\in\mathbb{R}$. Determine whether R is an equivalence relation on \mathbb{R} .
- 04. (a) Use a Cayley composition table to show that the set of functions $G = \left\{x, -x, \frac{1}{x}, -\frac{1}{x}\right\}$ under the binary operation of composition of functions forms an abelian group.
 - (b) Let G be the group of real numbers under the usual addition, and let G' be the group of positive real numbers under the usual multiplication. Show that the mapping f:G→G', defined by f(a) = 2^a, is a homomorphism.
 Is it an isomorphism? Justify your answer.

The Open University of Sri Lanka
B.Sc. Degree Programme – Level 05
Open Book Test (OBT) - 2010/2011
Pure Mathematics / Computer Science
PMU 3294/ CSU 3276/ PME 5294 – Discrete Mathematics

Model Answer

- 01. (a) (i) "Three distinct points lying in a plane do not form a triangle and three distinct points lying in a plane are not collinear."
 - (ii) "a and b are odd natural numbers and ab is an even natural number or a+b is an odd natural number."
 - (b) Let p and q be two statements. Then consider the following truth table:

p	q	~ p	- p \cdot q	$-(-p\vee q)$	$p \wedge q$		$p \wedge (\sim (\sim p \vee q)) \vee (p \wedge q)$
T	T	F	T	F	Т	Т	T
T	F	F	F '	T	F	inka T ira salabata it	
F	T	T	Т	F	F	F Contraction	Start Franks.
F	F	T	T	F	F	F	F 3

The truth values of the column headed by $p \wedge (-(-p \vee q)) \vee (p \wedge q)$ are the same as the truth values of the column headed by p.

Thus $p \land (\neg (\neg p \lor q)) \lor (p \land q)$ is logically equivalent to p.

(c) (i)
$$\lim_{\theta \to \infty} \frac{\sin \theta}{\theta} = 1$$
 iff $\sin^2 \theta + \cos^2 \theta > 1$.

$$\lim_{\theta \to \infty} \frac{\sin \theta}{\theta} = 1$$
 is false $\left(\because \lim_{\theta \to \infty} \frac{\sin \theta}{\theta} = \infty\right)$

$$\sin^2 \theta + \cos^2 \theta > 1$$
 is false $\left(\because \sin^2 \theta + \cos^2 \theta = 1\right)$

Therefore the biconditional statement is true.

(ii)
$$\forall x \in \mathbb{R}, \quad 5^{2x} - 5^{x+1} + 6 < 0$$

When
$$x=0$$
; $1-5+6=2>0$

Therefore the statement is false.

(iii)
$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ \frac{x+y}{2} \ge \sqrt{xy}$$

When
$$x = -1$$
 and $y = -1$;

$$\frac{x+y}{\frac{2}{2}} = \frac{(-1)+(-1)}{2} = -1 \\ \sqrt{xy} = \sqrt{(-1)(-1)} = 1$$

$$\frac{x+y}{2} \neq \sqrt{xy} \qquad \forall x, \ \forall y$$

Therefore the statement is false.

02. (i) $\forall n \in \mathbb{N}$, $n^2 + n + 41$ is prime. Although the latter grant of the

When
$$n = 41$$
; $41^2 + 41 + 41 = 41(41+1+1) = 41 \times 43$ is not prime.

Therefore we have disproved the statement using counter example.

(ii) If ab is odd, then a is odd and b odd.

Proof by Contraposition.

If a is even or b is even, then ab is even.

Case (i) If a is even and b is not even (odd).

Then
$$a = 2k$$
 and $b = 2k' + 1$ for some $k, k' \in \mathbb{Z}$

$$ab = (2k)(2k'+1) = 2[k(2k'+1)]$$
 is even.

Case (ii) If a is not even (odd) and b is even,

Then
$$a = 2k + 1$$
 and $b = 2k'$ for some $k, k' \in \mathbb{Z}$

$$ab = (2k+1)(2k') = 2[(2k+1)k]$$
 is even.

Case (iii) If a is even and b is even.

Then
$$a = 2k$$
 and $b = 2k$ for some $k, k' \in \mathbb{Z}$

$$ab = (2k)(2k') = 2[k(2k')]$$
 is even.

- (iii) $\exists n \in \mathbb{N}$ such that 6n-1 and 6n+1 are not prime. When n=4, 6n-1=23 and 6n+1=25 (not prime) That is (6n-1) and (6n+1) are not prime. Proof by illustrative example.
- (iv) $\forall n \in \mathbb{N}$ 1.1! + 2.2! + 3.3! + + n.n! = (n+1)! 1Proof by Mathematical Induction. Now consider $\sum_{k=1}^{n} k.k! = (n+1)! - 1$. When n=1; 1.1! = (1+1)! - 1. Thus the result is true for n=1. Assume that the result is true for n=p;

That is
$$\sum_{k=1}^{p} k.k! = (p+1)!-1$$
.

Now consider when n = p+1;

$$\sum_{k=1}^{p+1} k.k! = \sum_{k=1}^{p} k.k! + (p+1).(p+1)!$$

$$= (p+1)! - 1 + (p+1)(p+1)!$$

$$= (p+1)! [1+p+1] - 1$$

$$= (p+2)! - 1$$

03. (a)
$$(A \times B) \cap (A \times C) = \{(x,y) | (x,y) \in A \times B \wedge (x,y) \in A \times C\}$$

$$= \{(x,y) | (x \in A \wedge y \in B) \wedge (x \in A \wedge y \in C)\}$$

$$= \{(x,y) | x \in A \wedge (y \in B \cap C)\}$$

$$= A \times (B \cap C)$$

(b) $R = \{(m, n) | m, n \in \mathbb{Z} \land m | n\}$ is not anti-symmetric. $2, -2 \in \mathbb{Z} \text{ and } 2 | -2 \land -2 | 2 \text{ but } 2 \neq -2$ That is ${}_{2}R_{-2} \land {}_{-2}R_{2}$ but $2 \neq -2$ Therefore R is not a partial order.

(c)
$$R = \{(x, y) | x, y \in \mathbb{R} \land x - y \in \mathbb{Q}\}$$
 and on a number of the first equivalent $x \in \mathbb{R}$

R is reflexive:

$$\forall x \in \mathbb{R}, x-x=0 \in \mathbb{Q}$$
 . The specifical describes $x \in \mathbb{R}$, with Eugens

R is symmetric:

$$\begin{array}{l} _{x}R_{y} \implies x-y \in \mathbb{Q} \\ \implies -(x-y) = y-x \in \mathbb{Q} \text{ is a write } x_{0} = x_{0} \text{ in the problem } x_{0$$

R is transitive:

 \therefore R is an equivalence relation on \mathbb{R} .

From the above Cayley composition table,

- (i) The operation o satisfies the closure property.
- (ii) Since composition of functions is associative, is associative.

 (We could also verify this directly from the table)
- (iii) x is the identity element.

(iv) Pairs of inverse elements are;

$$\{x, x\}, \{-x, -x\}, \left\{\frac{1}{x}, \frac{1}{x}\right\}, \left\{-\frac{1}{x}, -\frac{1}{x}\right\}$$

- (v) Since the above table is symmetric about the main diagonal,satisfies the commutative property.
 - \therefore (G, °) is an abelian group.

(b)
$$f:(\mathbb{R},+)\to(\mathbb{R}^+,\times)$$
 such that $f(a)=2^a$

Take $a, b \in (\mathbb{R}, +)$, then

$$f(a+b) = 2^{a+b} = 2^a \times 2^b$$

Therefore f is a homomorphism.

Let
$$f(a) = f(b)$$

$$2^a=2^b$$

$$a = b$$

$$\therefore f \text{ is } 1-1$$

Now take any $x \in (\mathbb{R}^+, \times)$ such that $f(a) = x \in \mathbb{R}^+$

Then
$$2^a = x$$

$$\Rightarrow \ln_2 x = a \ (\in \mathbb{R})$$

f is onto.

Since f is bijective, and homomorphism.

 $\therefore f$ is an isomorphism.