THE OPEN UNIVERSITY OF SRI LANKA B.Sc DEGREE PROGRAMME: LEVEL 03 CLOSED BOOK TEST - 1: 2010

DURATION: ONE AND HALF HOURS (1 1/2 HOURS)

CPU 1142: DATA STRUCTURES AND ALGORITHMS

Date: 05th March, 2010

Time: 4.00 pm - 5.30 pm

Answer ALL questions.

Q1.

a)

- i. What is a *Data Structure*?
- ii. List down the three (03) basic operations that can be performed with Data Structures.
- b) What is a List?
- c) Distinguish between Array Implementation of List and Pointer Implementation of List.
- d) Use the following C language declaration of Array Implementation of List to answer the questions from d (i) to d (iii).

```
#define nodes 100
struct node

int info;
int next;

}

struct node strArray[nodes];
```

- i. Graphically explain the functionality of the above C code.
- ii. Write C program code for the following functions:

int getNode() - Remove a node from the available list and return a pointer to it.

void freeNode (int p) - Release a node to the available list.

iii. Write an algorithm to delete the node following the node (p) and store its contents in variable character x.

- a)
 - i. What is a Linked List?
 - ii. What are the features of a Linked List? Briefly explain them?
- b) What is a Stack? Why it is called as a LIFO data structure?
- c) A Stack has the following basic operations.

```
POP(S) - remove the top element of the Stack S
PUSH(x, S) - insert element x at the top of the Stack
```


Figure 1: Current state of the stack

i. Figure 1 shows the current state of the Stack. Graphically show the following operations that can be performed on the above Stack. Indicate the top pointer in each state of the Stack.

```
PUSH(F, S);
PUSH(I, S);
POP(S);
PUSH(D, S);
POP(S);
```

ii. Write the C language code to perform the PUSH and POP operations.

Q3.

a) Use the following Tree (Figure 2) to answer the questions from a (i) to a (vi).

Figure 2: Structure of the Tree

- i. How many levels are there in the above Tree?
- ii. What is the level of node F?
- iii. What are the terminal nodes in the above tree?
- iv. Distinguish between the degree of a node and degree of a tree.
- v. What is the degree of the above Tree?
- vi. What are the degrees of node B and node C?
- b) What is a Binary Tree? Explain by using two (02) suitable examples.

c)

- i. What is a Strictly Binary Tree?
- ii. Give two (02) examples for Strictly Binary Tree. They should have more than two (02) levels.

*** All Rights Reserved ***

THE OPEN UNIVERSITY OF SRI LANKA B.Sc DEGREE PROGRAMME: LEVEL 03

CLOSED BOOK TEST - 02: 2010

CPU 1142: DATA STRUCTURES AND ALGORITHMS

DURATION: ONE AND HALF HOURS (1 1/2 HOURS)

Date: 30th April, 2010

Time: 4.00 pm - 5.30 pm

Answer ALL questions.

Q1.

- a) What are the two types of recursion? Briefly explain them.
- b) Write a recursion function to print the square values of numbers from a given positive number upto 1. The output should be as follows, if the given number is 5.

square value of 5 = 25square value of 4 = 16square value of 3 = 9square value of 2 = 4square value of 1 = 1

- c) What are the two types of sorting methods? Briefly explain them.
- d) How many passes are required to sort n number of integers by using the bubble sort?
- e) Explain how the *bubble sort* algorithm works on the following set of integers, when sorting them in ascending order.

f) Compare and contrast the *bubble sort* algorithm with the *quick sort* algorithm.

Q2.

- a) What is a binary search tree? Briefly explain.
- b) Construct a binary search tree for the following set of integers. Answer the questions from (c) to (e) by using the binary tree that you have constructed.

- c) What will be the output, when you traverse the tree in the following orders?
 - i. Preorder (NLR)
 - ii. Inorder (LNR)
 - iii. Postorder (LRN)

- d) What is the depth of the tree?
- e) What are the leaf nodes and non leaf nodes of the tree?

Q3.

- a) What is meant by the Binary Search?
- b) State how binary search can be applied for the following array, to search the element with the value '12'? Clearly state the steps that are involved.

2	8	11	12	13	18	20	22	25

c) What will be the result if the node with value 6 is removed from the following binary tree? Clearly draw the resulting diagram of the below tree structure.

- d) What is a heap?
- e) What are the two types of heap? Briefly explain them.

*** All Rights Reserved ***