The Open University of Sri Lanka
B.Sc. Degree Programme - Level 3

Department of Physics
Waves in Physics - PYU 1162 / PYE 3162
Open Book Test - I: 2009/2010

MODEL ANSWERS

1. (a) $(4-\sqrt{5} \mathrm{j})^{3}=(4-\sqrt{5} \mathrm{j})^{2} \times(4-\sqrt{5} \mathrm{j})$

$$
=\left(16-8 \sqrt{5} j+5 j^{2}\right) \times(4-\sqrt{5} j)
$$

$$
=(11-8 \sqrt{5} j) \times(4-\sqrt{5} j) \quad\left[\text { because } j^{2}=-1\right]
$$

$$
=44-32 \sqrt{5} j-11 \sqrt{5} j+40 j^{2}
$$

$$
=44-32 \sqrt{5} j-11 \sqrt{5} j-40
$$

$$
=4-43 \sqrt{5} j
$$

$$
\begin{aligned}
\text { Magnitude of }(4-\sqrt{5} \mathrm{j})^{3} \text { is } & =\sqrt{(4)^{2}+(43 \sqrt{5})^{2}} \\
& =\sqrt{16+9245} \\
& =\underline{\underline{96.234}}
\end{aligned}
$$

Direction of $(4-\sqrt{5} \mathrm{j})^{3}$ is $=\arctan \left(\frac{-43 \sqrt{5}}{4}\right)$

$$
=\sqrt{16+9245}
$$

$$
=87.62^{0}
$$

(b) $\frac{A e^{j\left(\omega t+\frac{\pi}{2}\right)}}{4+5 j}=\frac{A\left(\cos \left(\omega t+\frac{\pi}{2}\right)+j \sin \left(\omega t+\frac{\pi}{2}\right)\right.}{4+5 j}$
(c) We know that, $e^{j \theta}=\cos \theta+j \sin \theta$

$$
\begin{aligned}
& =\frac{A\left[\cos \left(\omega t+\frac{\pi}{2}\right)+j \sin \left(\omega t+\frac{\pi}{2}\right)\right]}{4+5 j} \times \frac{4-5 j}{4-5 j} \\
& =\frac{A\left[4 \cos \left(\omega t+\frac{\pi}{2}\right)+4 j \sin \left(\omega t+\frac{\pi}{2}\right)-5 j \cos \left(\omega t+\frac{\pi}{2}\right)+5 \sin \left(\omega t+\frac{\pi}{2}\right)\right]}{4^{2}+5^{2}} \\
& =\frac{A\left[4 \cos \left(\omega t+\frac{\pi}{2}\right)+5 \sin \left(\omega t+\frac{\pi}{2}\right)\right]+j A\left[4 \sin \left(\omega t+\frac{\pi}{2}\right)-5 \cos \left(\omega t+\frac{\pi}{2}\right)\right]}{41} \\
& \text { Real part is }=\frac{A}{41}\left[4 \cos \left(\omega t+\frac{\pi}{2}\right)+5 \sin \left(\omega t+\frac{\pi}{2}\right)\right] \\
& \text { Imaginary part is }=j \frac{A}{41}\left[4 \sin \left(\omega t+\frac{\pi}{2}\right)-5 \cos \left(\omega t+\frac{\pi}{2}\right)\right]
\end{aligned}
$$

(ii)

$$
\begin{align*}
Z_{1} & =[j]^{j}=\left[e^{j\left(\frac{\pi}{2}\right)}\right]^{j}=\left[e^{j\left(\frac{\pi}{2} \pm 2 n \pi\right)}\right]^{j} \tag{i}\\
& =e^{j^{2}\left(\frac{\pi}{2} \pm 2 n \pi\right)}=e^{-\left(\frac{\pi}{2} \pm 2 n \pi\right)} \\
& \approx 0.208,3.88 \times 10^{-4}, 1.11 \times 10^{2}, \ldots .(\text { when } n=0.1,2, \ldots) \\
Z_{2} & =[j]^{8.03}=\left[e^{j\left(\frac{\pi}{2} \pm 2 n \pi\right)}\right]^{8.03} \\
& =e^{j\left[8.03 \times\left(\frac{\pi}{2} \pm 2 n \pi\right)\right]} \\
& =\cos \left[8.03 \times\left(\frac{\pi}{2} \pm 2 n \pi\right)\right]+j \sin \left[8.03 \times\left(\frac{\pi}{2} \pm 2 n \pi\right)\right] \\
& \approx 0.999+0.047 j, 0.972+0.233 j, \ldots .(\text { when } n=0.1, \ldots)
\end{align*}
$$

2. (a) (i) Periodic Motion or Harmonic Motion: Any motion that repeats itself in regular interval.

Displacement, x, at a time is given by $x(t)=x_{m} \cos (\omega t+\varphi)$

$$
\text { Or } \quad x(t)=x_{m} \sin (\omega t+\varphi)
$$

Amplitude (x_{m}): Magnitude of maximum displacement of the particle in either direction.

Angular frequency (ω): Number of complete cycles per second.

$$
\omega=\frac{2 \pi}{T}=2 \pi f \quad\left(\text { Unit: } \text { rad s }^{-1}\right) \quad \text { where } f \text { is frequency. }
$$

Phase (φ): Phase is a constant and it represents a stage in a cycle that cyclic motion has reached at a given time.
(ii) Velocity - SHM

$$
v(t)=\frac{d x}{d t}=-\omega x_{m} \sin (\omega t+\varphi)
$$

Velocity amplitude, $v_{m}=\omega x_{m}$

$$
v(t)=\frac{d x}{d t}=-v_{m} \sin (\omega t+\varphi)
$$

Acceleration - SHM

$$
a(t)=\frac{d v}{d t}=-\omega^{2} x_{m} \cos (\omega t+\varphi)
$$

Acceleration amplitude, $a_{m}=\omega^{2} x_{m}$

$$
a(t)=\frac{d x}{d t}=-a_{m} \cos (\omega t+\varphi)
$$

Also, $a(t)=-\omega^{2} x(t)$
(iii) Hooke's law: Force $=-k x$ and Newton's second law: Force $=m a=-m \omega^{2} x$

$$
\text { Force }=-m \omega^{2} x=-k x
$$

$$
\text { where } k \text { is spring constant, and } k=m \omega^{2}
$$

Therefore, the angular frequency (ω) is

$$
\omega^{2}=\frac{k}{m} \quad \text { and } \omega=\sqrt{\frac{k}{m}}
$$

Therefore, the period (T) is

$$
T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{m}{k}}
$$

(b) (i) Displacement: $x(0)=x_{m} \cos \varphi=-8.50 \mathrm{~cm}$

Velocity: $\quad v(0)=-\omega x_{m} \sin (\varphi)=-0.92 \mathrm{~m} \mathrm{~s}^{-1}$
Acceleration: $\quad a(0)=-\omega^{2} x_{m} \cos (\varphi)=+47.0 \mathrm{~m} \mathrm{~s}^{-2}$

$$
\begin{align*}
(3) /(1) \quad=\Rightarrow \quad-\omega^{2} & =47.0 /-0.085 \tag{3}\\
\omega & =\sqrt{\frac{47.0}{0.085}}=\underline{\underline{23.52 \mathrm{rad} \mathrm{~s}^{-1}}} \\
f & =\frac{\omega}{2 \pi}=\frac{23.52 \times 7}{2 \times 22}=\underline{\underline{3.74 \mathrm{~Hz}}}
\end{align*}
$$

(ii) $(2) /(1) \quad==>\quad-\omega \tan (\varphi)=-0.92 /-0.085$

$$
\tan (\varphi)=-0.92 /(0.085 \times 23.52)=-0.46
$$

$$
\varphi=\tan ^{-1}(-0.46)=-24.71^{\circ} \text { or } 155.29^{\circ}
$$

But, $\varphi=155.29^{\circ} \quad$ (See next part for explanation)
(iii) From (1), $\quad x_{m}=x(0) / \cos \varphi=-0.085 / \cos (-24.71)$

$$
=-0.094 \mathrm{~m}
$$

But amplitude is a positive constant. Therefore, φ cannot be -24.71°
Therefore, $\quad x_{m}=x(0) / \cos \varphi=-0.085 / \cos (155.29)$
$=0.094 \mathrm{~m}$
3. (a) Let the oscillations of the spring be along the x axis. Then the spring force and damping force acting on the mass are:

$$
\begin{aligned}
& F_{\text {restoring }}=-k x \\
& F_{\text {damping }}=-b v=-b \frac{d x}{d t}
\end{aligned}
$$

The net force is, $F_{n e t}=\mathrm{m} \frac{d^{2} x}{d t^{2}}=-k x-b \frac{d x}{d t}$
Hence the differential equation of motion for free oscillations of the system is,

$$
\mathrm{m} \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+k x=0
$$

Or

$$
\frac{d^{2} x}{d t^{2}}+\frac{b}{m} \frac{d x}{d t}+\frac{k}{m} x=0
$$

Or $\quad \frac{d^{2} x}{d t^{2}}+\gamma \frac{d x}{d t}+\omega_{o}^{2} x=0$
where $\omega_{o}=\sqrt{\frac{k}{m}}$ and $\gamma=\frac{b}{m}$
(b) Damped frequency is 0.995 times the ω_{o}.

Equation for the damping frequency is $\omega^{2}=\omega_{o}^{2}-\frac{\gamma^{2}}{4}$

$$
\begin{aligned}
& 0.995^{2} \omega_{o}^{2}=\omega_{o}^{2}-\frac{\gamma^{2}}{4} \\
& 0.99 \omega_{o}^{2}=\omega_{o}^{2}-\frac{\gamma^{2}}{4} \\
& 0.01 \omega_{o}^{2}=\frac{\gamma^{2}}{4}=\frac{b^{2}}{4 m^{2}}
\end{aligned}
$$

Therefore, $\quad b^{2}=0.04 m^{2} \omega_{o}^{2}=0.04 m^{2} \frac{k}{m}=0.04 m k$

$$
b=0.2 \sqrt{m k}=0.2 \sqrt{0.2 \times 80}=\underline{0.8 \mathrm{~kg} \mathrm{~s}^{-1}}
$$

(c)

$$
\begin{aligned}
& Q=\frac{\omega_{o}}{\gamma}=\sqrt{\frac{k}{m}} \times \frac{m}{b}=\sqrt{\frac{k m}{b^{2}}} \\
& Q=\sqrt{\frac{80 \times 0.2}{0.8^{2}}}=5
\end{aligned}
$$

Time taken for 4 complete cycle $=4 \times \frac{2 \pi}{\omega_{o}}$
For damped oscillations, amplitude at any time t is $=A(t)=A_{o} e^{-\frac{\gamma t}{2}}$
Therefore, the factor by which amplitude is reduced after 4 complete cycle is

$$
\begin{aligned}
\frac{A(t)}{A_{0}} & =e^{-\frac{\gamma t}{2}}=e^{-\frac{b 8 \pi}{2 m \omega_{o}}}=e^{-\frac{0.8 \times 4 \pi}{0.2 \times 20}} \\
& =\underline{\underline{0.081}}
\end{aligned}
$$

(d) Decay of energy of a damped oscillation system is

$$
E(t)=E_{o} e^{-\gamma t}
$$

Therefore, the fraction of the original energy is left after 4 oscillations is,

$$
\begin{aligned}
\frac{E(t)}{E_{o}} & =e^{-\gamma t} \\
& =\underline{\underline{0.0066}}
\end{aligned}
$$

