The Open University of Sri Lanka
 B.Sc Degree Programme-Level 04
 Open Book Test- 2010/2011
 Waves and Vibration/Geometrical Optics-PHU 2141/PHE 4141
 Duration: One and half ($11 / 2$) hours

Date : $16{ }^{\text {th }}$ September 2010
Time: 4.00 p.m to 5.30 p.m

Answer all questions

(1) (a) The following figure shows a rotating rod (length l) on a vertical plane at an uniform angular velocity ω.If the motion starts from the horizontal axis,
(a) Find the length of the projection of the rod on the vertical axis (y) at any time t.
(b) What are the velocity and acceleration of the motion?
(c) What are the maximum values of them
(d) At what phase angles do they reach to their maximums ?
(e) If a particle on the horizontal axis of the above figure oscillates
 according to the equation of $x=l \cos \omega t$, write down the equation or draw the path for the superposition of x and y.
(f) Write down x and y using the real part of complex numbers..
(2) A mass $m=0.2 \mathrm{~kg}$ is attached to a uniform spring of spring constant $k=20 \mathrm{~N} / \mathrm{m}$ and oscillates on a vertical frictionless plane as shown in the figure.
(a) Derive the frequency of the oscillation of mass.
(b) If an external force $-0.1 v$ acts on the mass (where v is the velocity) of the above system, obtain the differential equation with numerical constants for the motion.
(c) If the above motion (b) initiates with the phase angle of $\pi / 2$ and the amplitude of the oscillation is 0.12 m , write down the displacement of the motion.
(d) Briefly describe the amplitude variation of the motion and sketch it with time.
(3) When a simple harmonic wave is propagated through the air, the displacement (y) of an air particle at any position $(x \mathrm{~m})$ of the propagating direction at any instant $(t s)$ is given by

$$
y=2.5 \sin 2 \pi\left(x / 0.03-11 \times 10^{3} t\right) \mathrm{cm}
$$

(a) Find the amplitude, wave number, wavelength, oscillating frequency of air particles and the velocity of wave propagation.
(b) Find the displacement of the air particle at the moment $x=0.3 \mathrm{~m}$ and $t=0.01 \mathrm{~s}$
(c) Find the maximum transverse velocity of any particle in the air.
(d) Prove that the above wave equation satisfies the condition

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{C^{2}} \frac{\partial^{2} y}{\partial t^{2}} \quad \text { Where } \mathrm{C} \text { is the wave propagating velocity in the air }
$$

(e) If this wave is propaganmy ame me axis of one side closed tube, write down the equation of the reflected wave.

