Model Answer - CHU 1140/CHE 3140

2010/2011

Q1. (i)

Resultant $\uparrow R = 200 \, Cos \, 20^{\circ} + 200 \, Cos \, 20^{\circ}$

$$= \underline{375.88N}$$

Direction, vertically upwards

This will give support to the centripetal force which is required to walk.

$$R_{\rm y}$$
=176.13N

∴ Resultant
$$R = \sqrt{R_x^2 + R_y^2}$$

= $\sqrt{(998.87)^2 + (176.13)^2}$
= $\frac{1014.28N}{}$

Direction with the horizontal,

$$\theta = \tan^{-1} \left(\frac{176.13}{998.87} \right)$$
$$= 10^{\circ}$$

(iii) Taking movements around the knee,

$$F_{Q}x \frac{2}{10^{2}} - 40x \frac{20}{10^{2}} - 100 \frac{38}{10^{2}} = 0$$

$$F_{Q} = 40x10 - 100x19$$

$$F_{Q} = 2300N$$

Q2 (i) Power
$$P = \frac{W}{t}$$
 = mgh/t = $\frac{60 \times 10 \times 2}{7.0}$ = $\frac{171.4W}{}$

(b) Power
$$P = \frac{W}{t}$$
 = mgh/t = $60x10x2/2$ = $\underline{600W}$

(ii)
$$Ex \frac{20}{100} = 60x10x2$$

$$E = \underline{6000J}$$

(iii) (a) Thermal energy =
$$6000-60x10x2$$
 = $6000-1200$ = 4800 J

(b) Rate of production of thermal energy when he walks up
$$= \frac{4800}{7}$$

$$= \underline{685.71W}$$

(c) Rate of production of thermal energy when he runs up =
$$\frac{4800}{2}$$
 = $2400W$

- (b) (i) short sight
 - (ii) Concave lenses
 - (iii) $u = \alpha, v = +0.50m, f = ?$

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

$$\frac{1}{+0.50} - \frac{1}{\alpha} = \frac{1}{f}$$

$$\frac{1}{f} = \frac{+1}{0.50}$$

$$P = \frac{-100}{50} = -2D$$

(iv)
$$v = +0.20m$$
, $f = +0.50m$, $u + ?$

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

$$\frac{1}{0.20} - \frac{1}{u} = \frac{1}{0.50}$$

$$\frac{1}{0.20} - \frac{-1}{0.50} = \frac{1}{u}$$

$$\frac{0.3}{0.20x0.50} = \frac{1}{u}$$

$$u = \frac{1}{3}$$

$$u = 0.33m$$

- (c) (i) This is usually, due to the surface of the cornea not being spherical. The eye has different focal lengths in different planes.
 - (ii) Astigmatism can be corrected by using a suitably oriented cylindrical lens.

Q4 (a) (i) & (ii)

- (iii) It takes account of the fact that loudness is frequency dependent.
- (b) (i) S=ut

=331x4

= 1324m

=1.3km

The distance between the lighting stroke and the observation site = 1.3km

(ii) The peak sound intensity = I Wm⁻²

$$100 = 10 \log_{10} \left(\frac{I}{I_o} \right)$$

$$100 = 10 \log_{10} \left(\frac{I}{10^{-12}} \right)$$

$$10 = \log_{10} \left(\frac{I}{10^{-12}} \right)$$

$$\log_{10} 10^{10} = \log_{10} \left(\frac{I}{10^{-12}} \right)$$

$$10^{10} = \frac{I}{10^{-12}}$$

$$\therefore I = 10^{-2} Wm^{-2}$$

 \therefore The peaksound intensity = $1x10^{-2}Wm^{-2}$

(iii) The peak acoustic power = P W

$$\frac{P}{4\pi (1324)^2} = 10^{-2}$$

$$P = 4\pi (1324)^2 x 10^{-2}$$

$$\underline{P = 2.2x 10^5 W}$$

(c) (i) B₁, Malleus

B₂, Incus

B₃, stapes

(ii) By taking movements around P,

$$F_T \cdot \ell_T = F_o \cdot \ell_o$$

$$\therefore F_o = F_T \cdot (\ell_T / \ell_o)$$

(iii)
$$P_o = \frac{F_o}{A_o} \& P_T = \frac{F_T}{A_T}$$

$$\therefore \frac{F_o}{A_o A_T} = \frac{F_T}{A_o A_T} \cdot \frac{\ell_T}{\ell_o}$$

$$\therefore \frac{P_o}{A_T} = \frac{P_T}{A_o} \cdot \frac{\ell_T}{\ell_o}$$

$$\underline{P_o = P_{T.}(A_T \ell_T / A_o.\ell_o)}$$

- Q5 (a) (i) Please refer the book.
 - (iI) Please refer the book.
 - (b) (i) $A_1V_1=A_2V_2$

A₁-cross section area of a capillary

A2- cross section area of aorta

V₁- velocity of blood flow through a capillary and

V₂- velocity of blood flow through aorta

$$\pi (3x10^{-6})^{2}.V_{1} = \pi (1.2x10^{-2})^{2}x20x10^{-2}$$

$$V_{1} = \frac{20x10^{-2}x1.2^{2}x10^{-4}}{9x10^{-12}}$$

$$V_{1} = \underline{3.2x10^{6} ms^{-1}}$$

(ii) On average,

Time a red blood cell spend in a capillary=
$$\frac{\ell}{\nu}$$

$$= \frac{0.75x10^{-3}}{3.2x10^{6}}s$$
$$= 2.34x10^{-9}s$$
$$= \underline{2.34ns}$$

(c) The total area of all the capillary walls
$$= \left(2x\pi x \left(3x10^{-6}\right)x0.75x10^{-3}\right)12x10^{9}$$
$$= 169.65\text{m}^{2}$$

The total surface area of all the red blood cells = $2\pi x 4x10^{-6} x2x10^{-6} x5x10^{12} x5x10^{3}$

7000

$$=4\pi x 10^{5}$$

$$=1.26x 10^{6} \text{m}^{2}$$
 Ratio between two areas
$$=\frac{1.26x 10^{6}}{169.56}$$

 $=7.43 \times 10^3$

Q6. (a) Let m be the mass of water this cyclist evaporate.

$$400x \frac{80}{100} \times 60 = mxL$$

$$m = 400x \frac{80}{100} \times 60x \frac{1}{2436x10^3} kg$$

$$= 7.9 \times 10^{-3} kg$$

(b)
$$Q = mc\Delta\theta$$

$$\Delta\theta = Q/mc$$
= $400x \frac{80}{100} \times 60x \frac{60}{78x3.47x10^3} {}^{0}C$

$$\underline{\Delta\theta} = 4.3 {}^{0}C$$

(c) (i) His power consumption
$$= \frac{4.10 \text{x} 10^4}{60}$$

$$= \underline{683W}$$

(ii) His power output in useful work =
$$\frac{1200x70x9.81}{4x60x60}$$
 =
$$\frac{57.23W}{4x60x60}$$

(iii) His efficiency
$$= \frac{1200x70x9.81}{4.10x10^4 x4x60} x100$$

$$= \underline{8.37\%}$$