The Open University of Sri Lanka B.Sc. Degree Programme - Level 5 Department of Physics Atomic and Nuclear Physics - PHU 3143 / PHE 5143 Open Book Test - 2009/2010 Duration: $1\frac{1}{2}$ hrs.

Date:	03-04-2010
-------	------------

Time: 10.00 p.m. to 11.30 p.m.

Answer <u>all</u> Questions

- 1. (a) What are alpha particles? State their properties.
 - (b) Describe briefly the Rutherford's atomic model and Rutherford's alpha particle scattering theory?
 - (c) Using Rutherford's atomic model, find the probability per unit solid angle of scattering of alpha particles of energy E through an angle θ from a foil of thickness t containing N atoms per unit volume. State your assumptions, if any, clearly.
 - (d) An alpha particle, having an impact parameter 150 fm, is found to scatter through 30° when incident on a silver foil. Calculate the energy of the alpha particle.

(30 marks)

- 2. (a) The Bohr theory of the hydrogen atom is based on several assumptions. Discuss these assumptions and their significance.
 - (b) In hydrogen atom, the quantum number *n* can increase without limit. Because of this does the frequency of possible spectral lines emitted from the hydrogen also increase without limit?
 - (c) The Balmer series for hydrogen atom corresponds to electronic transitions from higher energy states to the state with quantum number n = 2.
 - (i) Find the longest wavelength photon emitted in the Balmer series and determine its frequency and energy.
 - (ii) Find the shortest wavelength photon emitted in the same series and determine its frequency and energy.

(35 marks)

- 3. (a) (i) State the main differences (at least three differences) between alpha, beta and gamma rays.
 - (ii) Explain how they are produced in an atomic system?
 - (b) Can carbon-14 dating be used to measure the age of a stone? Explain.
 - (c) A 50.0 g sample of carbon is taken from a skeleton and is found to have carbon-14 decay rate of 200.0 decays per minute. It is known that 1.0 g carbon from a living organism has a decay rate of 15.0 decays per minute and that carbon-14 has a half-life of 5730 years. Find the age of the skeleton.

(35 marks)

Some useful physical constants

Electron mass, <i>m_e</i> ,	=	9.109 × 10 ⁻³¹ kg
Elementary charge, e,	=	1.602 × 10 ⁻¹⁹ C
Permittivity of free space, \mathcal{E}_{0} ,	=	$8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
Planck's constant, h,	=	$6.626 \times 10^{-34} \text{ J s}$
Speed of light, <i>c</i> ,	=	2.998 × 10 ⁸ m s ⁻¹

* * * * * * * *