The Open University of Sri Lanka
 B.Sc. Degree Programme - Level 4
 Department of Physics
 Advanced Electromagnetism - PHU 2142 / PHE 4142
 Open Book Test - 2009/2010
 Duration: $1 \frac{1}{2} \mathrm{hrs}$.

Date: 15-03-2010
Time: 04.00 p.m. to 05.30 p.m.

Answer all Questions

1. (a) A parallel plate capacitor has plates of area A and separation d and stores a charge Q. Write down an expression for the energy stored in it.
(b) It is isolated and the plates pulled apart so the separation of the plates is now $d+e$. What is now the stored energy and how much work has been done in pulling the plates apart?
(c) Show that the force of attraction between the plates now is $\frac{Q^{2}}{2 \varepsilon_{o} A}$
(d) The electric field at a radius r, between the inner conductor of radius a and the screen conductor of radius b (i.e. $a<r<b$), in a coaxial cable is $E(r)=\frac{\lambda}{2 \pi \varepsilon_{o} r}$, where λ is the charge per unit length on the inner conductor. The energy density is $\frac{\varepsilon_{o} E^{2}}{2}$. Using these two expressions calculate the total energy stored in the electric field.
2. (a) A thin plastic disk of radius R has a charge q uniformly distributed over its surface and rotates at an angular frequency ω. Find the charge between the radii r and $r+d r$, where $d r$ is a small element.
(b) As the disk rotates this charge constitutes a current (say di) forming a circular loop. What is the value of this current?
(c) This current produces a magnetic field (say $d B$) at the centre of the disk. What is this magnetic field?
(d) What is the total magnetic moment (say η) of the disk?
(e) If the field B along the axis of a dipole is $\frac{\mu_{0}}{4 \pi} \eta \frac{2}{z^{3}}$, show that the magnetic field due to all the charge,
(i) at the centre of the disk is $B(0)=\frac{\mu_{0} \omega q}{2 \pi R} \quad$ and
(ii) at $z \gg R$ along the z-axis is $B(z)=\frac{\mu_{0} \omega q R^{2}}{8 \pi z^{3}}$
(40 marks)
3. (a) A very long solenoid of radius r_{l} and number of turns per meter n_{l} carries current I. A ring with radius $r_{2}>r_{1}$ is put around the solenoid with its center on the solenoid's axis. What is the mutual inductance of the ring-solenoid system?
(b) What is the induced emf in the ring if there is a steady current I ?
(c) Two long parallel wires, each of radius a, whose centers are a distance d apart carry equal currents in opposite directions. Show that, neglecting the flux within the wires themselves, the inductance (say L) of a length l of such a pair of wires is given by

$$
L=\frac{\mu_{0} l}{\pi} \ln \left(\frac{d-a}{a}\right)
$$

