The Open University of Sri Lanka
B.Sc. Degree Programme-Level05
Department of Mathematics and Computer Science
CSU3275/PMU3293: Automata Theory

Final Examination -2010/2011 Duration: Two & half hours

Date: 17.08.2011

Time: 9.30am -12.30 pm.

Answer four questions only.

01. (a) Let x and y be any two strings over an alphabet Σ . Show that

|xy| = |x| + |y|; where |w| denotes the length of the string w.

(b) Define a substring v of a string w.

Show that if u is a substring of a string w, then u^R is a substring of w^R , where x^R denotes the reversal of a string x. [Hint: you may assume that $(xy)^R = x^R y^R$ for any two strings x and y.

- (c) State whether each of the followings are true or false. Justify your answer.
 - (i) $101 \in 0*(0 \cup 1)*$
 - (ii) $a^m b^m \in (ab)^* (ab)^m$; m = 1, 2, ...
 - (iii) $(a \cup b \cup ab \cup ba)^* = (a \cup b)^*$
 - (iv) $abb \in a^*c^*ba^*(bb)^*b^*a^*$
- 02. (a) Define a DFA (deterministic finite automaton) and describe the operation of it.

Design a DFA to accept the strings over {0, 1} consisting of an even number of 0s and an even number of 1s. Test your DFA with each of the following input strings. Clearly show the work you have done.

- (i) 00
- (ii) 10101
- (iii) (00)*0110
- (b) Define the language accepted by a DFA.

What is the language accepted by the DFA shown in Fig 2.1?

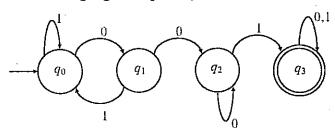


Fig 2.1

- 03. (a) Define an NFA (nondeterministic finite automaton) and describe the operation of it.
 - (b) What are the differences between a DFA and an NFA? Provide two applications of finite automata.
 - (c) Design an NFA to accept all strings over {0, 1} such that the third symbol from the right is 1.
 - (d) Providing an illustrative example, explain how you would transform a Moore machine to a Mealy machine.
- 04. (a) Explain what is meant by "implementation of a Mealy machine".

 Let $M = (S, I, O, \delta, \beta)$ be a Mealy machine, where $S = \{s_1, s_2\}$, $I = \{i_1, i_2, i_3\}$, $O = \{o_1, o_2\}$, and whose state transitions and outputs are defined in Table 4.1.

Table 4.1

In the usual notation, obtain $M_{\rm code}$ and $M_{\rm circ}$ machines.

- (b) Define the isomorphism between two Mealy machines. Let M_1 , M_2 and M_3 be Mealy machines. Show that.
 - (i) $M_1 \approx M_1$
 - (ii) $M_1 \approx M_2$ and $M_2 \approx M_3 \Rightarrow M_1 \approx M_3$
- 05. (a) Define the behavioural equivalence between two Mealy machines. Let M_1 , M_2 and M_3 be Mealy machines. Show that $M_1 \equiv M_2$ and $M_2 \equiv M_3 \implies M_1 \equiv M_3$
 - (b) What is meant by a weaken homomorphism?

 Let M_1 and M_2 be the Mealy machines defined in Table 5.1 and Table 5.2 respectively.

	$\delta(s,i)$		$\beta(s,i)$	
	а	Ь	a	b
p	q	r	1	2
q	p	r.	1	2
r	q	S	2	. 1
S	p	S	2	1

	$\delta(s, i)$		$\beta(s,i)$	
	а	b	а	b
20	S ₀	s_1	0	0
s_1	s_0	S2	0	0
S2	<i>S</i> ₀	s_2	1	1

Table $5.2 - M_2$

Table 5.1 - M_1

The triple $\phi = (\alpha, \sigma, \theta)$ is defined as $\alpha(p) = s_0$, $\alpha(q) = s_0$, $\alpha(r) = s_1$, $\alpha(s) = s_2$, and σ and θ are identity functions. Check whether $\phi: M_1 \to M_2$ is a weaken homomorphism.

06. Explain what is meant by an SP partition of states of a Mealy machine.

Let *M* be the Mealy machine whose transitions and outputs are defined in Table 6.1.

	$\delta(s, i)$		$\beta(s,i)$	
	0	1	0	. 1
а	d	С	S	S
\boldsymbol{b}	f	а	S	S
C	е	\boldsymbol{b}	t	t_{\perp}
đ	b	e	t	t
e	а	f	S	5
f	c	d	S	S

Table 6.1

Let $\pi = \{\{a, f\}, \{b, e\}, \{c, d\}\}.$

- (i) Show that π is an SP partition of M.
- (ii) Find another SP partition of M, different from π above, which consists of at least two elements and at most four elements.
- (iii) Show that π is output consistent.
- (iv) Construct the quotient machine $\frac{M}{\pi}$.

*** All Rights Reserved***