
#### THE OPEN UNIVERSITY OF SRI LANKA

# B.Sc Degree Programme — Level 4



# CMU 2220 — Concepts in Chemistry

MCQ Answer Sheet: Mark a cross (x) over the box that corresponds to the most suitable answer.

| 15 - NT - |  |
|-----------|--|
| Reg. No.  |  |
|           |  |

| FOR EXAMINER'S USE ONLY |     |       |  |  |  |  |
|-------------------------|-----|-------|--|--|--|--|
| Answers                 | No. | Marks |  |  |  |  |
| Correct                 |     |       |  |  |  |  |
| Wrong                   |     | _     |  |  |  |  |
| Unmarked                |     | 0.0   |  |  |  |  |
| Total                   |     |       |  |  |  |  |

| 1  | a  | ь | c | d | e | 2  | а  | ь | c | d | e | 3  | a        | ь | c        | ď | e. | 4  | а | b | С | d | e |
|----|----|---|---|---|---|----|----|---|---|---|---|----|----------|---|----------|---|----|----|---|---|---|---|---|
|    |    |   |   | - |   |    | -  |   |   |   |   |    |          | - |          |   |    | •  | - |   |   |   | , |
| 5  | я  | b | С | d | e | 6  | а  | b | c | d | e | 7  | a        | b | С        | d | e  | 8  | а | b | c | ď | е |
|    |    |   |   |   |   |    |    |   |   |   |   |    |          |   |          |   |    |    |   |   |   |   |   |
| 9  | 21 | b | c | d | e | 10 | a  | b | с | d | е | 11 | а        | b | c        | d | e  | 12 | а | b | c | d | е |
|    |    |   |   |   |   |    |    |   |   |   |   |    | <u> </u> |   |          |   |    |    |   |   |   |   |   |
| 13 | a  | b | с | d | e | 14 | ้อ | b | c | d | e | 15 | а        | b | c        | d | e  | 16 | a | b | c | d | e |
|    |    |   |   |   |   |    |    |   |   |   |   |    |          |   |          |   |    |    |   |   |   |   |   |
| 17 | а  | b | с | d | e | 18 | а  | b | c | d | e | 19 | а        | b | с        | d | e  | 20 | a | b | e | d | e |
|    |    |   |   |   |   |    |    |   |   |   |   |    |          |   |          |   |    |    |   |   |   |   |   |
| 21 | а  | b | c | d | e | 22 | а  | b | С | d | e | 23 | a        | b | c        | d | e. | 24 | а | b | c | d | e |
|    |    |   |   |   |   |    |    |   |   |   |   |    |          |   | <u> </u> |   |    |    |   |   |   |   |   |
| 25 | a  | b | С | ď | e |    |    | ٠ |   |   |   |    |          |   |          |   |    |    |   |   |   |   |   |

### THE OPEN UNIVERSITY OF SRI LANKA

B. Sc. Degree Programme — Level 4
Assignment III (Test) — 2010/2011
CMU 2220 — Concepts in Chemistry



5.00 p.m.

#### 1 hour

# 4<sup>th</sup> April 2011 (Monday) 4.00 p.m.

- $\triangle$  Answer all 25 questions (25 x 4 = 100 marks)
- Example Choose the most correct answer to each of the questions and mark this answer with an "X" on the answer script in the appropriate box.
- ☑ Use a PEN (not a PENCIL) in answering.
- Any answer with more than one "X" marked will be considered as an incorrect answer.
- Marks will be deducted for incorrect answers (0.6 per wrong answer).
- The use of a non-programmable electronic calculator is permitted.
- Cellular phones are not allowed.
- ▶ Please write your mailing address on the back of the MCQ answer sheet.

| Gas constant (R)              | =        | 8.314 JK <sup>-1</sup> mol <sup>-1</sup> |
|-------------------------------|----------|------------------------------------------|
| Avogadro constant (NA)        | <b>=</b> | $6.023 \times 10^{23} \text{ mol}^{-1}$  |
| Faraday constant (F)          | =        | 96,500 Cmol <sup>-1</sup>                |
| Planck constant (h)           | =        | $6.63 \times 10^{-34}$ Js                |
| Velocity of light (c)         |          | $3.0 \times 10^{8} \text{ m s}^{-1}$     |
| Protonic charge (e)           | ==       | 1.602×10 <sup>-19</sup> C                |
| Standard atmospheric pressure | =        | $10^5 \text{ Pa}(\text{Nm}^{-2})$        |
| $Log_e(X)$                    | =        | 2.303 Log <sub>10</sub> (X)              |

| 1. | Which of the following descriptions will most adequately describe the process of condensation of water vapour to liquid water at its standard boiling point? |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (a) reversible process                                                                                                                                       |
|    | (b) isobaric process                                                                                                                                         |
|    | (c) isothermal process .                                                                                                                                     |

- (d) univariant phase transformation
- (e) isobaric and isothermal process
- 2. The SI unit for entropy of a thermodynamic system is
  - (a) JK (b)  $JK^{-1}$  (c)  $JK^{-1} \text{ mol}^{-1}$  (d)  $J \text{ mol}^{-1}$
- 3. What best describes the process where the equation  $\Delta S = q_{rev}/T$  is applicable?
  - (a) reversible process
  - (b) isothermal process
  - (c) isobaric process
  - (d) reversible isothermal process
  - (e) reversible isobaric process
- 4. For a spontaneous process which one of the following expressions will NOT apply?
  - (a)  $dS_{system} > Dq_{rev} / T$  (b)  $dS_{isolated} > Dq_{rev} / T$  (c)  $dA_{P,T} < 0$  (d)  $dG_{P,T} < 0$  (e) dU = Dq + Dw
- 5. The equation  $\Delta S = nC_{p,m} \ln \left(\frac{T_2}{T_1}\right) + nR \ln \left(\frac{P_1}{P_2}\right)$  can be applied for a system with change of state from state A  $(P_1, T_1)$  to state B  $(P_2, T_2)$  of
  - (a) an ideal gas only at constant pressure
  - (b) an ideal gas only at constant temperature
  - (c) any gaseous system under all conditions
  - (d) any homogeneous system at constant pressure
  - (e) any homogeneous system under all conditions
- 6. Which one of the following is referred to as a fundamental thermodynamic equation
  - (a) H = U + PV (b) G = H + TS (c) PV = nRT (d) dA = -PdV SdT (e) G A = H U
- 7. The variation of the standard enthalpy change  $(\Delta H^0)$  of a reaction with temperature at constant pressure is given by the
  - (a) Clausius Clapeyron equation
  - (b) Kirchoff's equation
  - (c) Gibbs Helmholtz equation
  - (d) Maxwell relationship
  - (e) Clapeyron equation

## Questions 8 - 10 refer to the data given below.

When one mole of liquid water is converted to one mole of water vapour at  $373 \, \mathrm{K}$ , under a pressure of  $101.325 \, \mathrm{kPa}$ , the work done on the system is  $-3.098 \, \mathrm{kJ}$ . The enthalpy of vapourization of water absorbed by the system is  $40.82 \, \mathrm{kJ} \, \mathrm{mol}^{-1}$ .

| 8. The value of | change in internal ener | gy (ΔU` | ) in kJ would be. |
|-----------------|-------------------------|---------|-------------------|
|-----------------|-------------------------|---------|-------------------|

- (a) 43.91
- (b) -43.91

(c) 37.72

- (d) -37.72
- (e) -40.82

### 9. What is the entropy change?

- (a) zero
- (b)  $-40.82 \text{ J K}^{-1}$
- (c)  $109 \text{ J K}^{-1} \text{mol}^{-1}$

- (d)  $-109 \text{ J K}^{-1} \text{mol}^{-1}$
- (e)  $40.82'JK^{-1}$

## 10. The Gibbs free energy change is

- (a) zero
- (b) 5kJ

(c) 10 kJ

- (d) 15 kJ
- (e) 20 kJ
- 11. What is the Maxwell relationship that can be derived from the equation dG = VdP SdT?
  - (a)  $(\partial P/\partial T)_V = (\partial S/\partial V)_T$
  - (b)  $(\partial V / \partial T)_p = -(\partial S / \partial P)_T$
  - (c)  $(\partial T/\partial V)_S = -(\partial P/\partial S)_V$
  - (d)  $(\partial T/\partial S)_V = (\partial V/\partial P)_T$
  - (e)  $(\partial V/\partial T)_T = -(\partial S/\partial P)_p$

# 12. The Clausius Clapeyron equation can be applied to

- (i) any univariant phase transformation.
- (ii) a process involving melting and fusion only.
- (iii) a process involving vapourization and sublimation only.

The correct statement/s out of (i), (ii) and (iii) above is/are

- (a) Only (i)
- (b) Only (ii) and (iii).
- (c) All (i), (ii) and (iii)

- (d) Only (iii)
- (e) Only (ii)
- 13. What is the change in entropy that occurs when (n/2.303) mol of gaseous neon  $(C_{V,m} = 3R/2)$  is subjected to a ten fold increase in thermodynamic temperature followed by a ten fold increase in the initial volume.
  - (a) 2.0 nR
- (b) 2.5 nR

(c) 3.0 nR

- (d) 3.0 nR
- (e) 0

| 14. | Chemical potential (µ) | is least accurately described | by which of | the following |
|-----|------------------------|-------------------------------|-------------|---------------|
|     | statements?            |                               |             | •             |

- (i) An intensive thermodynamic property
- (ii) Partial molar Gibbs free energy
- (iii) Partial molar free energy
- (iv) An extensive thermodynamic property

The correct statements out of (i), (ii), (iii) and (iv) above are

- (a) Only (i) and (ii).
- (b) Only (i) and (iii).
- (c) Only (i), (ii) and (iii)

- (d) Only (ii) and (iv).
- (e) Only (iii) and (iv).

15. The pressure coefficient of the chemical potential in a closed system, defined as 
$$\left(\frac{\partial \mu_i}{\partial P}\right)_{T,n_j}$$
, is equal to

- (a)  $-\overline{G}_i$

(c)  $-\overline{H}_{i}$ 

- (d)  $\overline{S}_i$

- (a) Entropy is an intensive property but a state function
- (b) Entropy is an extensive property and non state function
- (c) Molar entropy is an extensive property but not a state function
- (d) Entropy is an extensive property and a state function
- (e) Molar entropy is an intensive property but not a state function

17. For a particular chemical reaction 
$$\Delta H^0 = +70 \, \text{kJ}$$
 and  $\Delta S^0 = +210 \, \text{JK}^{-1}$ . The temperature at which this reaction would become spontaneous is,

- (a) below 60.3°C
- (b) above 333.3°C
- (3) above 60.3°C

- (d) below 333.3°C
- (e) at 0°C

## 18. Which of the following statement is in accordance with the third law of thermodynamics?

- (a) The absolute entropy of a pure substance decreases with increasing temperature.
- (b) The change in entropy of the universe must be positive for a spontaneous process.
- (c) At absolute zero the value of entropy becomes zero for pure crystalline substances.
- (d) The entropy of the universe is constant.
- (e) The entropy change of any transformation does not approach zero as the temperature becomes zero.

- (a)  $\Delta G = RT \ln(K)$  (b)  $-\Delta G = RT \ln(K)$  (c)  $\Delta G^{\circ} = RT \ln(K)$
- (d)  $-\Delta G^{\circ} = RT \ln(K)$  (e)  $\Delta G = -R \ln(K)$

|     | •                                                                                                                                                | , 1                                                                                                                                                           |                                                                                 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 20  | A colligative property  (a) arrangement of particles (b) number of particles (c) nature of particles (d) mass of particles (e) number and nature | es<br>5                                                                                                                                                       |                                                                                 |
| 21. |                                                                                                                                                  | s at $450  \text{K}$ , $\Delta G = -5.2  \text{kJ}$ a the amount of useful work the                                                                           | and $\Delta H = -43.7 \text{ kJ}$ . If the process is                           |
|     | (a) $-48.9 \text{ kJ}$                                                                                                                           | (b) -5.2 kJ<br>(e) +43.7 kJ                                                                                                                                   | (c) -43.7 kJ-                                                                   |
| 22. |                                                                                                                                                  |                                                                                                                                                               | s free energy $(\Delta G)$ when one mole of ne V to 2V at a temperature of T is |
|     | (a) $-RT \ln(2)$                                                                                                                                 | (b) RT ln(2)                                                                                                                                                  | (3) RT ln(K)                                                                    |
|     | (d) $-RT \ln(20)$                                                                                                                                | (e) R ln(2)                                                                                                                                                   |                                                                                 |
| For | a reaction at 1000K, the                                                                                                                         | ranswering the questions $23 - 24$ value of $\Delta H^0$ is positive and $\Delta H^0$ is the spontaneity of the reaction (b) non spontaneous (e) irreversible | S° is negative.                                                                 |
| 24. | With the rise of temper                                                                                                                          | rature the equilibrium consta                                                                                                                                 | nt will                                                                         |
|     |                                                                                                                                                  | (b) decrease<br>(e) be constant                                                                                                                               | (c) be zero                                                                     |
| 25. | The value of equilibriu (i) greater than one (ii) less than one (iii) equal to one                                                               | m constant at 1000K is                                                                                                                                        |                                                                                 |
| ٠   | The correct statement<br>(a) Only (i).<br>(d) Only (i) and (iii)                                                                                 | s out of (i), (ii) and (iii) abov<br>(b) Only (ii)<br>(e) Only (ii) and (iii).                                                                                | e is/are<br>(c) Only (iii).                                                     |