The Open University of Sri Lanka
B.Sc. Degree Programme: Level 05
CSU3275/PMU3293 – Automata Theory
Department of Mathematics & Computer Science
The Closed Book Test – CBT (2010/2011)
Duration: One & Half hours (1¹/₂ Hours)

Time: 4.00nm -5.30nm

Date: 05.04.2011

Answer ALL questions.

Question 01

- (a) Define a nondeterministic finite automaton (NFA), and describe the operation of it. What is meant by a configuration of an NFA? You may use example(s) to support your answer.
- (b) Let M be an NFA. Define L (M), the language recognized by M. Consider the NFA represented by the directed graph shown in Fig 1.1. What is the language recognized by it?

Fig 1.1

Question 02

Let $M = (S, I, O, \delta, \beta)$ be a Mealy machine. Define the functions δ^* and β^* . Prove that for all $s \in S, x \in I^*$ and $a \in I$,

(a)
$$\delta^*(s, xa) = \delta(\delta^*(s, x), a)$$

(b)
$$\beta^*(s, xa) = \beta^*(s, x) \beta(\delta^*(s, x), a)$$

Question 03

Let $M_1 = (S_1, I_1, O_1, \delta_1, \beta_1)$ and $M_2 = (S_2, I_2, O_2, \delta_2, \beta_2)$ be two Mealy machines. Define the serial composite $M_1 \oplus_{\kappa} M_2$ of M_1 and M_2 .

Let M_1 and M_2 be the Mealy machines defined in Table 3.1 and Table 3.2 respectively. The function κ is defined as $\kappa(1) = a$, $\kappa(2) = b$.

	$\delta(s, i)$		$\beta(s,i)$	
	а	b	а	Ь
\$	S	t	2	1
t	t	S	1	2

Table $3.1 - \text{Mealy machine } M_1$

	$\delta(s, i)$		$\beta(s,i)$	
	а	b	а	b
S	S	t	1	0
1	t	5	0	0

Table 3.2 - Mealy machine M_2

Construct $M_1 \oplus_{\kappa} M_2$.

All Rights Reserved