

Time: 0930 - 1230 hrs. Date: 2013- 08 - 08

Answer any FIVE questions

1.

(a) Write Maxwell's equations.

(4)

(b) Simplify Maxwell's equations for free space.

(2)

(c) Using (b), derive an expression for $\nabla \times \nabla \times E$ in free space.

- (5)
- (d) Using the vector identity $\nabla \times \nabla \times \underline{A} = \nabla(\nabla \cdot \underline{A}) \nabla^2 \underline{A}$ show that in free space the variation of \underline{E} field satisfies the *wave equation* $\nabla^2 \underline{E} = \frac{1}{c^2} \frac{\partial^2 \underline{E}}{\partial t^2}$ where the constant c is the velocity of propagation of the wave. (5)
- (e) If $\mu = \mu_0 = 4\pi \times 10^{-7}$ H/m and $\varepsilon = \varepsilon_0 = \frac{1}{36\pi} \times 10^{-9}$ F/m for free space find the speed of electromagnetic wave propagation in free space. (4)
- 2. Transverse field components inside a rectangular waveguide are given below:

$$\vec{E}_{x} = -\frac{jm\beta\pi}{ak_{c}^{2}} \vec{A} \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$\vec{E}_{y} = -\frac{jn\beta\pi}{bk_{c}^{2}} \vec{A} \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$\vec{H}_{x} = \frac{jn\omega\varepsilon\pi}{bk_{c}^{2}}\vec{A}\sin\left(\frac{m\pi x}{a}\right)\cos\left(\frac{n\pi y}{b}\right)e^{-j\beta z}$$

$$\vec{H}_{y} = -\frac{jm\omega\varepsilon\pi}{ak_{c}^{2}}\vec{A}\cos\left(\frac{m\pi x}{a}\right)\sin\left(\frac{n\pi y}{b}\right)e^{-j\beta z}$$

You are required to find the mode of propagation, whether it is TM or TE. Let us take it as TX_{mn} .

(a)	If $X = M$ what is the dominant mode?	(2)
(b)	If $X = E$ what is the dominant mode?	(2) [.]
(c)	Show that TX_{m0} cannot exist.	(4)
(d)	Show that TX_{0n} cannot exist.	(4)
(e)	What is X , M or E ?	(2)
(f)	Find the dominant mode for the above field configuration.	(1)
(g)	Write an expression for H_z .	(2)
(h)	With the help of a diagram briefly explain how the dominant mode can be	excited
	in the waveguide.	(3)

3.

(a) For a cylindrical waveguide the following field components at $\phi = \phi_0$ are given;

$$\begin{split} & \textit{TE mode: } H_z^0 = A_n J_n(\rho \, k_c) \, ; \qquad H_\rho^0 = C_1 A_n J_n'(\rho \, k_c) \, ; \\ & \textit{TM mode: } H_\rho^0 = D_1 B_n J_n(\rho \, k_c) \, ; \, E_\phi^0 = D_2 B_n J_n(\rho \, k_c) \, ; \end{split}$$

$$(C_1, D_1, D_2, A_n \text{ and } B_n \text{ are constants})$$

- (i) What are the electromagnetic boundary conditions at a metallic surface? (3)
- (ii) Using (i) derive an expression for k_c

(b) The resonant wave length λ_r of a cylindrical resonator oscillating in the

$$n, m, l$$
 th mode is given by $\lambda_r = \frac{2\pi}{\sqrt{k_c^2 + \left(\frac{l\pi}{d}\right)^2}}$, where d is the length of the resonator.

Two air filled cylindrical resonators R_1 and R_2 have the same lengths but different diameters.

$$R_1$$
 is oscillating in TM_{217} mode and R_2 is oscillating in TE_{237} mode. (7)

If the resonant frequencies of R_1 and R_2 are equal, find the ratio of diameters of the resonators, using the Bessel charts given in the Annexure.

- (a) (i) Write the scattering matrix of a 3-port junction. **(1)**
 - (ii) Write the condition that should be satisfied if the junction is losseless. **(2)**
 - (iii) Write the condition that should be satisfied if the junction is reciprocal. **(2)**
 - (iv) Write the matrix equation for the junction if it is losseless and reciprocal. (2)
- (b) Obtain the [s] matrix for a H-plane T-junction if the main ports 1 and 2 are matched.

- (c) Draw a *H*-plane Tee junction. An electromagnetic wave incident on the auxiliary arm 3 of a H-plane Tee junction splits into two waves in the main arms 1, 2. Show the distribution of E-field in each arm assuming that the mode of propagation is dominant TE mode . (5)
- 5.
- (a) Sketch I-V characteristics of a Gunn diode and mark the operating region of a Gunn oscillator. **(4)**
- (b) The following setup is used to measure the guide wave length (λ_g) of a slotted rectangular wave guide section:

- (i) What is the function of the Pin Modulator? (2)
- (ii) What is the function of the detector? (2)
- (iii) What should be the component marked X? (2)
- (iv) What is the function of X? (2)
- (iv) How should the slotted section be terminated? (2)
- (v) When the tunable probe is moved along the slotted line, the first voltage minimum was observed at a distance $d_1 = 5.4 \, cm$. When the probe was moved further, the next voltage minimum was observed at a distance $d_2 = 7.9 \, cm$. If the internal measurements of the slotted section are $a = 1.6 \, cm$ and $b = 0.8 \, cm$, find
 - 1. guide wave length (λ_g). (2)
 - 2. cutoff wavelength (λ_c). (2)
 - 3. frequency of the Gunn oscillator. (2)

Assume that the mode of propagation is TE_{10} .

6.

- (a) A certain cellular system consists of 3 clusters with the cluster size 7. Total bandwidth available for the system is 35 *MHz*. The bandwidth of each communication channel (duplex) is 50 *kHz*.
 - (i) Draw the cellular system and indicate the 3 clusters. (2)

	(11) Select any cell on your diagram of (1) above and mark it as A . If the	e carrier				
	frequency used by A is f_A , mark all the cells that use f_A .	(4)				
	(iii) At a given instant what is the maximum no. of subscribers that can connected to a particular cell?	be				
		(4)				
	(iv) Select any cell on your diagram and mark it as \mathbf{B} . Apply 120° sector cell. If co-channel interference is reduced by a factor \mathbf{k} due to sector value of \mathbf{k} .					
(b)	Explain following terms:					
,	(i) Forward Control Channel	(3)				
	(ii) Hand off.	(3)				
		4				
7.						
(a)	What is signal fading related to mobile communication?	(2)				
()	2) What is signal fading related to moone communication:					
(b)	Briefly explain following fading types:					
	(i) flat fading	(2)				
	(ii) frequency selective fading.	(2)				
(c)) In Rayleigh fading, various parameters are related by the equation					
	$N_R = \sqrt{2\pi} f_m \rho e^{-\rho^2}.$					
	(i) Define the parameters in the equation.	(2)				
	(ii) A mobile is undergoing Rayleigh Fading while moving. Carrier frequency of the mobile signal is 1.2 <i>GHz</i> . If ρ is 0.8 and the maximum Doppler frequency is 16 <i>Hz</i> , find					
	 positive edge going level crossing rate maximum velocity of the mobile. 	(3) (3)				
(d)	What is the difference between signal scattering and signal diffraction?	(3)				
(e)	With the help of a diagram explain how the knife edge diffraction takes	place.(3)				

8.

- (a) In satellite communication a 4-port microwave junction is used to connect the antenna, transmitter and the receiver. What is this junction? (3)
- (b) Draw a block diagram and explain how the same antenna is used for transmission and reception. (4)
- (c) (i) With the help of a diagram explain the principle of operation of a Traveling Wave Tube amplifier. (4)
 - (ii) What is the main advantage of this amplifier over klystron amplifier? (3)
- (d) (i) Briefly explain the role of a *satellite transponder* in a satellite communication system. (3)
 - (ii) How is a satellite transponder powered? (3)

Annexture

Properties of Bessel function $J_n(x)$ and it's derivative $J_n(x)$

k	$J_{0}\left(x ight)$	$J_1(x)$	$J_2(x)$	$J_3(x)$	$J_4(x)$	$J_5(x)$
1	2.4048	3.8317	5.1356	6.3802	7.5883	8.7715
2	5.5201	7.0156	8.4172	9.7610	11.0647	12.3386
3	8.6537	10:1735	11.6198	13.0152	14.3725	15.7002
4	11.7915	13.3237	14.7960	16.2235	17.6160	18.9801
5	14.9309	16.4706	17.9598	19.4094	20.8269	22.2178

Table.1
$$k^{th}$$
 root of $J_n(x) = 0$

k	$J_{0}^{\prime}\left(x\right)$	$J_{1}{}^{\prime}\left(x\right)$	J_2 '(x)	$J_3'(x)$	$J_{4}^{\prime}\left(x ight)$	$J_5'(x)$
1	3.8317	1.8412	3.0542	4.2012	5.3175	6.4156
2	7.0156	5.3314	6.7061	8.0152	9.2824	10.5199
3	10.1735	8.5363	9.9695	11.3459	12.6819	13.9872
4	13.3237	11.7060	13.1704	14.5858	15.9641	17.3128
5	16.4706	14.8636	16.3475	17.7887	19.1960	20.5755

Table.2
$$k^{th}$$
 root of $J'_n(x) = 0$