The Open University of Sri Lanka B.Sc. Degree Programme 2011/2012 CMU 3129 - Environmental Chemistry ## FINAL EXAMINATION Two (02) hours Date: 24.11.2012 Time: 9.30 am - 11.30 am. ## **ANSWER ANY FOUR (04) QUESTIONS** - 1.a. i. Define the term 'residence time' as applied to environmental chemistry. - ii. Calculate the residence time of HCO_3^- in sea water, given that the input of HCO_3^- to Oceans from river is 2×10^{12} kg/yr. The amount of HCO_3^- in oceans is 2×10^{17} kg. Write any assumption(s) that you make. (20 marks) - b. Indicating the characteristics of the regions, draw the temperature profile of the atmosphere up to an altitude of 50 km. Explain the variation of temperature within. (40 marks) - c. Briefly describe the atmospheric sources, sinks and environmental effects of CO and CH₄. (40 marks) - 2. a. i. Draw the carbon cycle. - ii. How will the following anthropogenic activities affect the carbon cycle? - (a) Fossil fuel combustion - (β) Mining of coral for building industry (40 marks) - b. In photosynthesis, Inorganic carbon is converted to biomass according to the following equation. $$CO_2 + H_2O + h\gamma \rightarrow (CH_2O) + O_2$$ biomass If the total inorganic carbon concentration (mol dm⁻³) at pH = 7 and pH = 10 are given as 1.22×10^{-3} and 6.82×10^{-4} respectively, calculate the increase of biomass at high pH. Express your answer in mg dm⁻³. [C =12; H=1; O=16] (30 marks) c. i. What is meant by 'thermal stratification' of a lake. ii. Draw a labelled diagram to illustrate stratification of a lake in a temperate climate, showing the typical forms of the main elements in it. (30 marks) - 3. a. i What do you mean by acid rain. - ii. Write the sources and sinks of SO₂ and NO_x - iii. Briefly describe the effects of acid rain on water bodies and materials. - iv. An accidental leakage of SO₂ from a sulphuric acid manufacturing plant situated in an area caused the partial pressure of SO₂ in the atmosphere to increase to 0.1 Pa. For SO₂, $K_H = 1.25 \times 10^{-5} \text{ mol dm}^{-3} \text{ Pa}^{-1}$. K_a , for H_2SO_3 (aq) \leftrightarrow H^+ (aq) + HSO_3^- (aq) $1.7 \times 10^{-2} \text{ mol dm}^{-3}$ Calculate the pH of rain water falling into the area. Assume no contribution from other acidic gases present, the dissociation of HSO_3 is negligible and also no further oxidation of SO_2 is taking place by air. (70 marks) - b. i. Define the term 'Alkalinity' - ii. Titration of 100.0 ml of river water with 0.100 M HCl solution consumes 2.85 ml HCl to the methyl orange equivalence point. Calculate the total alkalinity in - equivalent of acid per litre (eq L⁻¹) - mg L⁻¹ CaCO₃ (30 marks) - 4. a. i. Draw the variation of concentration of stratospheric ozone. - ii. Briefly describe the environmental effects of the use of chlorofluorocarbons in industrial applications. (25 marks) - b. i. Briefly explain the phenomenon, 'global warming' - ii. Identifying the major cause(s) of global warming, briefly describe its consequences. (25 marks) - c. i Write one example of each of linear and ring poly phosphates. - ii. Give two uses of polyphosphates in industry. - iii. Show by chemical equation the ultimate product of polyphosphate hydrolysis. iv. Briefly describe the environmental consequence resulting from the presence of significant amount of phosphate in water. (20 marks) - d. i. What do you mean by the term 'coagulation' in water treatment process? - ii. Give two examples for chemical coagulants. - iii. What are their functions? (30 marks) - 5. a. i. Write the conditions necessary for the formation of photochemical smog. - ii. Draw and explain the diurnal variation of concentration of components of photochemical smog on a smoggy day. - iii. Write equations to show the formation of ozone and PAN. (60 marks) - b. i Define the terms BOD and COD. - ii. What is the BOD of water in which 10 mg of sugar (empirical formula (CH₂O) is dissolved in a litre? - iii. Why do the COD analysis and BOD₅ analysis usually give different results for the same wastewater? (40 mark) - 6. a. i Give the unique properties of water and their significance in biosphere. - ii. Lakes are generally classified into three types. What are they? What are their characteristics? (30 marks) - b. i. Write down the mathematical expression for the Henry's Law and identify the terms in it. - ii. Calculate the pH of a solution of ammonia in equilibrium with NH₃ gas having a partial pressure of 5.06 x 10³ Pa at 25°C. For NH₃, Henry's law constant, K_H is 5.7 x 10⁻⁴ mol dm⁻³ Pa⁻¹; K_b for $NH_3 + H_2O \leftrightarrow NH_4^+$ (aq) + OH is 1.8×10^{-5} mol dm⁻³. (30 marks) - c. i. Define the term pE. - ii. What is the use of a pE pH diagram? - iii. How does pE vary with depth in a stratified lake? Explain. - iv. Calculate the equilibrium partial pressure of oxygen (P_{O2}) in a water sample containing equal concentrations of nitrite, NO_2 and ammonium ion, NH_4 ⁺ at pH = 7. For the half reaction of nitrite to ammonia $$NO_2^- + 8H^+ + 6e \leftrightarrow NH_4^+ + 2H_2O$$ $E^0 = 0.892 \text{ V}$ For the half reaction involving $$O_2$$ reduction $4H^+ + O_2(g) + 4e \leftrightarrow 2H_2O$ $E^0 = 1.24 \text{ V}$ (40 marks)