The Open University of Sri Lanka Department of Electrical and Computer Engineering ECX 6241 – Field Theory Final Examination – 2013/2014

Date: 2014-08-13

Time: 0930-1230

Answer five questions by selecting two from Section A, two from Section B and one from Section C.

Section A

Select two questions from this section. (15 Marks for each)

01.

- (a) Calculate the work done by moving a charge in an electric field of $E = 2xy a_x + (x^2 z^2)a_y 3xz^2a_z$ from A(0,0,0) to B(2,1,3).
- (b) Verify the identity:

$$\int \nabla \times A \cdot dv = -\oint A \times dS$$

for $A = 5x^2y \, a_x + 3xy^2 a_y$ and the volume defined by 0 < x < 2, -1 < y < 1 and -5 < z < 5.

02.

- (a) Explain the term "directional derivative".
- (b) Given the scalar field $W = x^2y^2 + xyz$. Compute the directional derivative in the direction of $3a_x + 4a_y + 12a_z$ at (2, -1, 0).
- (c) Let *U* and *V* be scalar fields, show that

$$\oint_{L} U\nabla V \cdot d\mathbf{l} = -\oint_{L} V\nabla U \cdot d\mathbf{l}$$

Q3.

- (a) Verify the following vector identities in Cartesian coordinates,
 - i) $\nabla \times (\nabla \times A) = \nabla(\nabla \cdot A) \nabla^2 A$
 - ii) $\nabla \cdot \phi A = A \cdot \nabla \phi + \phi \nabla \cdot A$
- (b) Green's theorem for two continuous functions f and g is written as

$$\iiint (f\nabla^2 g - g\nabla^2 f) \, dR = \iint (f\nabla g - g\nabla f) \, dS$$

Evaluate

$$\int_C e^{-x} (\sin y \, dx + \cos y \, dy)$$

where C is the rectangle with vertices (0,0), $(\pi,0)$, $(\pi,\frac{\pi}{2})$ and $(0,\frac{\pi}{2})$.

Section B

Select two questions from this section. (20 Marks for each)

Q4.

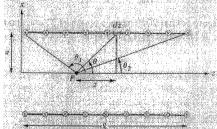
- (a) State the Gauss's law.
- (b) A spherically symmetric charge distribution is given by

$$\rho_v = \begin{cases} \rho_0 (1 - r/a)^2 & ; r \le a \\ 0 & ; r > a \end{cases}$$

Find *E* and V everywhere.

(c) Plot E and V along a_r and comment on it.

Q5.


- (a) State under which conditions the Poison's equation becomes Laplace's equation.
- (b) Conducting spherical shell with radii $a = 10 \ cm$ and $b = 30 \ cm$ are maintained at a potential difference of 100V such that V(r = b) = 0 and V(r = a) = 100V. Determine V and E in the region between the shells.
- (c) If $\varepsilon_r = 2.5$ in the region determine the total charge induced on the shells and the capacitance of the capacitor.

Q6.

- (a) State the Biot-Savart's law.
- (b) A solenoid of length *l* and radius *a* consists of *N* turns of wire carrying current *l*. Show that at point *P* along its axis

$$H = \frac{nI}{2}(\cos\theta_2 - \cos\theta_1)a_z$$

were n = N/l θ_1 and θ_2 are the angles subtended at P by the end turns as illustrated in the figure.

(c) Show that if $l \gg a$ at the center of the solenoid $H = nl \ a_z$

Section C

Select one question from this section. (30 Marks)

Q7.

- (a) State Maxwell's equations in differential and integral froms.
- (b) Derive the equation $\frac{\partial \rho}{\partial t} + \nabla J = 0$, using Maxwell's Equations when ρ Charge density and J Current density.
- (c) Given the total electromagnetic energy

$$W = \frac{1}{2} \int (\mathbf{E} \cdot \mathbf{D} + \mathbf{H} \cdot \mathbf{B}) dv$$

Show from Maxwell's equations that

$$\frac{\partial W}{\partial t} = -\oint_{S} (E \times H) \cdot ds - \int_{V} E \cdot J \, dv$$

Q8.

- (a) Define the Poynting vector and state the Poynting theorem.
- (b) A uniform plane wave propagating in a medium has

$$E = 2e^{-\alpha z}\sin(10^8t - \beta z)a_{\nu}V/m$$

If the medium is charactrized by $\varepsilon_r = 1$, $\mu_r = 20$ and $\sigma = 3$ S/m. Find α , β and H.

(c) Find the Poynting vector.

Note:

- 1. $\nabla \cdot (A \times B) = B \cdot \nabla \times A A \cdot \nabla \times B$
- 2. $\nabla \times (\nabla V) = 0$
- 3. $\mu_0 = 4\pi \times 10^{-7} H/m$
- 4. $\varepsilon_0 = \frac{10^{-9}}{36\pi} F/m$