THE OPEN UNIVERSITY OF SRI LANKA FACULTY OF NATURAL SCIENCES
B. SC. DEGREE PROGRAMME 2012/2013
DEPARTMENT OF PHYSICS

FINAL EXAMNINATION DURATION: - 3 HOURS

PYU2262- ELECTRONICS

DATE:- 14-12-2013

FROM 1.30 P.M. TO 4.30 P.M.

ANSWER 06 QUESTIONS ONLY, INCLUDING QUESTION No. 01 IN PART A

(Question No. 01 is compulsory)

PART A

1. Figure shows a sketch diagram of the circuit to measure the output of a transistor

- i. Redraw the circuit diagram with a suitable transistor
- ii. List the apparatus and components that you may use in this experiment.
- iii. Describe the type of the transistor that you may use in this experiment with reasons.
- iv. Identify the meters M1, M2 and M3 used in this circuit.
- v. Write down the initial adjustment that you may do in this experiment.
- vi. Describe the function of the variable resistor R₁.
- vii. Write down the steps that you may follow to take readings from M1 and M3?
- viii. Write down the steps that you may make in order to identify the operating point.
- ix. Sketch the expected output characteristics of the transistor with labeling the relevant axises.

PART B (ANSWER ANY 05 QUESTIONS FROM PART B)

- 1. a. (i) Write down advantages of semiconductor device in electronic industries.
 - (ii) If a student claims that "An extrinsic semiconductors contains equal numbers of electrons and holes" discuss this statement.
 - (iii) Discuss the differences between the Light Emitting Diode (LED) and Photo Diode
 - (iv) Explain changes occurs in the depletion region when the PN junction is in
 - (a) forward biased
 - (b) Reverse biased
 - b. Plot output wave form (V_o) for the circuit in the following figure for the input (V_i) shown. Assume that forward voltage of the given diode is 0.7 V.

- 2. a. Figure shows an incorrect full wave bridge rectifier circuit drawn by a student.
 - (i) Redraw the correct circuit diagram in your answer sheet.

- (ii) Draw the smoothing capacitor in the correct position of your circuit diagram in order to get the smoothed output wave form.
- (iii) Sketch the variation of the output wave forms for different capacitor values one high and one low.
- (iv) Output wave of the transformer is $V_m \sin 2\pi f t$ where V_m is peak voltage and f-frequency of the wave

Show that dc value of the output voltage (V_{dc}) is given by

$$V_{dc} = \frac{2V_m}{\pi}$$

- (v) If you are given a zener diode having $V_Z=9$ V, modify and redraw the given circuit to obtain a regulated voltage supply.
- b. i. What do you understand by a Clipper circuit and a Clamper Circuit?
 - ii. Draw the output wave form for the following circuit diagrams when the input wave form is sinusoidal with $V_m = 10 \text{ V}$.

iii. Draw the output wave form for the following clamping circuits when the input wave form is a sinusoidal with $V_m = 10 \text{ V}$.

- 3. a. Define the hybrid parameters h_{fe} and h_{ie} for a basic transistor circuit in CE configuration.
 - ii. Voltage gain (A_V) of a transistor amplifier is given by the following expression.

$$A_V = -\frac{h_f R_L}{(1 + h_o R_L) h_i}$$

When $\frac{1}{h_o} \gg R_L$ show that for practical purposes the above expression can be reduced to $-\frac{h_{fR_L}}{h_i}$ (Here Symbols have their usual meanings)

- b. A CE configuration transistor amplifier with self-bias or voltage-divider bias is required to have a voltage gain of about -200. An *npn* silicon transistor with $h_{fe} = 100$, $h_{ie} = 1 \text{ k}\Omega$ and maximum collector power dissipation of 75 mW is available. (Neglecting h_{re} and h_{oe} and using $V_{CC} = 12 \text{ V}$)
- i. Draw the circuit diagram with R_1 , R_2 , R_L and R_E (Here Symbols have their usual meanings)
- ii. Find the value of R_L
- Determine the current I_C through R_L assume that $V_{CG} = V_{CC}/2$ where G is the ground terminal.
- iv. Assuming power dissipation of the collector and emitter (CE) junction as 15 mW. Show that $V_{EG} = 1.2 \text{ V}$, hence find the R_E
- 4. a. i. Discuss the fundamental differences among class A, class B and class C amplifiers
 - ii. Discuss the differences between the parallel and series tuned circuits
 - iii. What is a tuned amplifier?
 - iv. Explain with a circuit diagram the operation of a single-tuned amplifier
 - b. An *npn* transistor circuit given below has $\alpha=0.985$ and $V_{BE}=0.3$ V. and $R_2=20$ k Ω , $R_E=2$ k Ω and VCC =16 V. Answer the following questions placing Q point at $I_C=2$ mA and $V_{CE}=6$ V
 - i. Determine the current gain β
 - ii. Show that the voltage across R₂ is 4.3 V
 - iii. Determine the R_C and R_1 assuming current passing through R_1 and R_2 are same.

- 5. a. i. Discuss the concept of feedback in amplifiers with a proper diagram.
 - ii. Explain what do you understand by the positive and negative feedback
 - iii. To an amplifier without a feedback circuit, if you introduce a negative feedback what changes you will obtain in the output of the amplifier.
 - iv. Show that the output impedance (R_{of}) of the feedback amplifier circuit can be written as $R_{of} = \frac{R_o}{1 A_V \beta}$ Where R_o -output impedance without feedback, A_V Voltage gain without feedback, β feedback factor
 - v. Figure shows the circuit of a negative voltage feedback amplifier. If without feedback, Voltage gain $A_V = 10{,}000$, input impedance $R_i = 10 \text{ k}\Omega$ and output impedance $R_o = 100 \Omega$, Determine
 - a. the feedback fraction (β)
 - b. gain with feedback $(A_{\nu f})$
 - c. the output impedance with feedback (R_{0f})

- 6. a. i. Determine the binary equivalent of 13.875
 - ii. Find the decimal equivalent of 101.1101
 - iii. Determine the binary equivalent of the hexadecimal number A5D
 - iv. Find the hexadecimal equivalent for the decimal number of 581
 - v. Perform the binary addition 11000.11 + 101.111
 - b. Prove the following expressions using Boolean Algebra

i.
$$ABC + A\overline{B}C + AB\overline{C} = A(B+C)$$

ii.
$$(A+B)(A+C) = A+BC$$

iii.
$$(A+B)(A+\bar{B})(\bar{A}+C) = AC$$

iv.
$$(\bar{A} + B)(A + B) = B$$

c. Find the complement (\overline{Y}) of the expressions given below

i.
$$Y = AB\overline{C} + A\overline{BC}$$

ii.
$$Y = \overline{A} + (B\overline{C} + \overline{B}C)$$

- 7. a. Obtain the Boolean expressions for the output Y in the logic circuits given below.
 - ii. Simplify the Boolean expressions that you have written in part (i)
 - iii. Draw the logic circuit diagrams for the simplified Boolean expressions.

Circuit diagram 1

Circuit diagram 2

b. Simply the following function by using K map method.

i.
$$X = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + AB\overline{C}$$

ii.
$$X = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

iii.
$$X = \overline{ABC} + \overline{ABC} + A\overline{BC} + AB\overline{C}$$

iv.
$$X = \overline{ABC} + \overline{ABC} + A\overline{BC} + ABC$$

- c. A burglar alarm should be activated when the two conditions given below are simultaneously satisfied
 - (a) The main entrance door of the building is open, and
 - (b) The bed room door and /or the kitchen door is open.

Write the truth table and construct the logic expression to operate the alarm using one AND gate and one OR gate.

- 8. a. How is an RS flip-flop converted into a JK flip-flop? Give its truth table and explain how it is obtained
 - b. Explain use of preset and clear inputs in a flip-flop
 - c. What is a De-multiplexer? How can a decoder circuit be used as a De-multiplexer? Give the block diagram of a 4-to-16 line De-multiplexer