

THE OPEN UNIVERSITY OF SRI LANKA BACHELOR OF INDUSTRIAL STUDIES /

BACHELOR OF TECHNOLOGY

FINAL EXAMINATION – 2012 / 2013

TTX5232 YARN AND FABRIC MECHANICS

DURATION - THREE HOURS

DATE: 31st July 2013

TIME: 0930 – 1230 Hours

Total Number of Questions = 7 % Number of questions to be answered = 06 Answer the question 1, which is compulsory, and five (05) additional questions. Question 1 carries thirty (30) marks and the questions 2 to 7 carry fourteen (14) marks each.

01. Compulsory Question

a) Why we should be very careful in the application of classical theories of solid mechanics to textile materials?	(02 %)
b) Distinguish between "ultimate tensile strength" and "tenacity" as applied for tex	ctile
fibres.	(02 %)
c) Define the term"Creep"?	(02 %)
d) What is torsional rigidity?	(02 %)
e) What is the most distinguishable internal structural difference observed between ring-	
spun and OE yarns?	(02 %)
f) A filament yarn consists of 19 filaments of circular cross section. Sketch the cro	oss-
section of the yarn assuming an open-packing structure.	(03 %)
g) What are "Wild Fibres" according to Morton?	(02 %)
h) What are the two laws of friction according to Amontons?	(04 %)
i) What do you understand by "catastrophic rupture"?	(03 %)
j) How does the twist influence the initial modulus of twisted multi-filament yarns	s. (02 %)
k) How does the twist affect breaking extension of multi-filament yarns?	(02%)
l) What is the relationship between the diameter and the direct count of a yarn?	(02%)
m) What is fractional warp cover?	(02%)

- **02.** a) What is yield point of a fibre? Explain how yield point of a stress/strain curve can be determined by
 - (i) Meredith's construction

(ii) Coplan's construction.

(08%)

- b) Draw the graphs of characteristic tensile stress/strain behavior of the following fibres: Flax, Cotton, Viscose and wool. (03%)
- c) Which of the above fibres has the best and which has the worst dimensional stability under tensile loads? (03%)
- 03. a) What is flexural rigidity?

(02%)

b) Flexural rigidity of a textile fibre is given by the following formula:

Flexural rigidity =
$$\frac{1}{4\pi} \eta \cdot \frac{ET^2}{\rho}$$

 η is the shape factor.

i) What is shape factor? Discuss its importance.

(04%)

ii) What are Ε, T and ρ?

(02%)

c) What is specific flexural rigidity? How does it affect bending behaviour of a fibre?

(06%)

- 04. a) If you compare a steel cable made by twisting of steel wires and a twisted multi-filament yarn, their structures are not similar. What difference do you observe and what is the reason for this difference? (05 %)
 - b) Explain what internal structural feature of the yarns made out of staple fibres is responsible in providing them with acceptably high strengths? (05%)
 - c) Explain the term "preferential radial migration or coring".

(04 %)

05. a) "As more twist is added to continuous filament structures, the tensile strength of the yarn decreases." Do you agree with this statement? Give reasons for your answer.

(06%)

b) What is the "revised qualitative approach" introduced by Hearle et. al. to explain the effect of twist on the strength of staple yarns? Explain with suitable diagrams.

(08%)

- **06.** a) Discuss why Ammonton's laws of friction are not applicable to textile fibres and yarns. (08 %)
 - b) Explain how following factors would affect the frictional force between a textile fibre or yarn threaded around a solid guide:

i) Surface lubrication of the yarn/fibre

(04 %)

ii) diameter of the guide

(03%)

07. a) State all the assumptions made by Pierce in the development of his mathematical model for plain weave fabrics. (08 %)

- i) The above Figure shows a cross sectional view of a plain weave fabric. Redraw the figure and complete all not indicated dimensions. (03%)
- ii) Derive the following equation:

b)

$$p_2 = (l_1 - D\theta_1) \cos\theta_1 + D \sin\theta_1$$
, where $D = d_1 + d_2$ (04 %)

- **08.** a) What is the reason for introducing Racetrack Geometry by Kemp? (02%)
 - b) What is thread flattening coefficient? (02%)
 - c) Explain why is it necessary to consider the weave repeat as a whole, while we deal with the geometry of non-plain fabrics. (03%)
 - d) If the length of a weave repeat is p_r and it has n_i intersections and n_f floats. Derive an equation to give p_r in terms of the lengths of intersection (p_i) and floats (p_f) .

 (03%)
 - e) Explain how p_i varies in relation to width of the yarn cross section in low sett, medium sett and high sett fabrics. (04%)