The Open University of Sri Lanka

B.Sc. Degree Programme – 2013/14

Environmental Chemistry - CMU 3129

FINAL EXAMINATION

Duration: Two (02) Hours

Date: 09.06.2014.

Time: 9.30 a.m. - 11.30 a.m.

ANSWER ANY FOUR (04) QUESTIONS

IF more than four questions are answered only the first four answers will be marked.

- 1.a. i. Define the terms, 'source' and 'sink' as used in environmental chemistry. Write the source(s) and sink(s) of stratospheric ozone.
 - ii. Giving examples, distinguish between primary pollutants and secondary pollutants in the atmosphere.
 - iii. What do you mean by the term 'residence time'? Calculate the residence time of water in the ocean, given that the volume of the ocean is $1.4 \times 10^9 \text{ km}^3$ and the river influx is $3.7 \times 10^5 \text{ km}^3/\text{yr}$.

(45 marks)

- b. i. Sketch and explain the temperature profile of the atmosphere from the Earth up to 50 km. Write the important characteristics of the regions.
 - ii. What do you mean by "temperature inversion"? Draw the temperature profile to show the change(s) due to a temperature inversion.

(55 marks)

- 2.a. i. What is meant by 'acid rain'? Write the sources of acid rain. Briefly describe three adverse effects of acid rain on the environment.
 - ii. Compare **five** different characteristics of London-type smog and Los Angeles type smog.

(50 marks)

- b. What do you mean by 'TLV' of indoor air pollutants? How does it relate to the nature of pollutants? (20 marks)
- c. i. Write **three** unique properties of water and their significant effect upon the life on the Earth.
 - ii. What is meant by mineral acidity as applied in an aquatic system? Give **two** examples for mineral acidity. (30 marks)
- 3.a. i. What do you mean by 'global warming potential (GWP)'? Compare the global warming potentials of CO₂ and CH₄.
 - ii. Briefly describe three major consequences of global warming.

(40 marks)

- b. i. What is hardness in water and by what is it caused?
 - ii. Calculate the total hardness (in mg CaCO₃ / L) of water containing the following cations (in mg/L), Na⁺ 20; Ca²⁺ 15; Mg²⁺ 10 Sr²⁺ 2. [Atomic mass (g mol⁻¹) Na = 23; Ca = 40; Mg = 24; Sr = 87.6; C=12; O=16]
 - iii. What are the undesirable effects of hardness?
 - iv. Briefly explain the lime soda process which can be used to remove permanent hardness.

(40 marks)

- c. i. What is meant by 'nutrient pollution' in an aquatic system?
 - ii. What are the sources for nutrient pollution?
 - iii. What are the **two** most important nutrients involved in this pollution?
 - iv. Give two adverse effects of nutrient pollution on an aquatic system.

(20 marks)

- 4. a. i. State Henry's law.
 - ii. Calculate the pH of CO_2 saturated water at 25°C, given that the partial pressure of CO_2 in air is 3.5 x 10^{-4} atmosphere, and that for CO_2 the Henry's constant K_H

= 3.4×10^{-2} mol L⁻¹ atm⁻¹ at 25°C; the ionization constant K_a, for H₂CO₃ has a value of 4.5×10 mol L⁻¹ at this temperature.

(30 marks)

- b. i. Define pE of an aqueous solution.
 - ii. What does a high pE value imply about a solution?

Consider the conversion of SO₄²⁻ to H₂S in an acidic solution.

- iii. Write down a balanced equation for this reduction reaction.
- iv. Write down the balanced equation for the one electron mole.
- v. Deduce the expression relating to pE to pH, $[SO_4^{2-}]$, and P_{H_2S} .
- vi. Calculate the partial pressure of H_2S when the $[SO_4^{2-}]$ is 10^{-5} M and the pH is 6.0 for solution that is in equilibrium with atmospheric O_2 .

[pE^o for the above mentioned reduction reaction is = 5.75; For any solution is equilibrium with atmospheric O₂, at pH 6, pE = +14.5].

(70 marks)

- 5.a. i. What do you understand by the term 'alkalinity of a water sample?
 - ii. The alkalinity of a river sample was determined to be $5x10^{-3}$ mol H⁺/L and its pH is 8.0. Calculate the concentrations of CO_3^{2-} and HCO_3^{-} in the river.

The second dissociation constant for of H_2CO_3 is 4.69 x 10^{-11} mol/L.

(30 marks)

- b. i. Define the terms Biochemical Oxygen Demand (BOD) and Chemical oxygen Demand (COD).
 - ii. Explain why the values of BOD and COD for the same water sample can differ slightly.
 - iii. Calculate the COD value of industrial wastewater sample containing 400 mg/L of stearic acid C₁₈H₃₆O₂. [Relative atomic mass: C=12, O=16; H=1]

(40 marks)

i. Give three major changes that occur during aerobic process in the secondary wastewater treatment.
ii. Explain how surfactants from detergents affect water treatment process.

(30 marks)

- 6.a. Tetrahedrons and octahedrons are the building blocks of layer silicate clays. These building blocks are arranged to form sheets. According to these sheets arrangement Clay minerals can be classified as 1:1 and 2:1 minerals.
 - i. What is the central element in each of tetrahedrons and octahedrons?
 - ii. Briefly explain what do you understand by 1:1 and 2:1 minerals? Give one example of each mineral.

(20 marks)

- b. i. What is meant by acidification of soil?
 - ii. What are the major sources of soil acidity?
 - iii. What are the consequences of soil acidity?
 - iv. Give two compounds that are commonly used to neutralize acid soils.

(20 marks)

- c. i. What is soil organic matter?
 - ii. Why it is important soil component for plant growth?
 - iii. What is humus? Give at least three importances of humas.

(20 marks)

- d. i. What is composting?
 - ii. Why it is important?
 - iii. What are the parameters which control the optimum composting operation?
 - iv. What is meant by the concept carbon to nitrogen ratio?

(40 marks)