The Open University of Sri Lanka

B.Sc. Degree Programme -Level 05

Department of Mathematics and Computer Science

Final Examination -2014/2015

CPU3144: Theory of Computing

Duration Two hours

Date: 20th October 2015

Time: 1.30pm-3.30pm

Answer Four Questions only

- 01. (i) Define Automation.
 - (ii) Give the formal definition of a Deterministic Finite Automation (DFA).
 - (iii) When does a DFA accepts a string?
 - (iv) What are the differences between a Non-Deterministic Finite Automation (NFA) and a DFA?
- 02.(i) Write the definition of a substring, a prefix and a suffix of a string.
 - (ii) Write down the set of substrings, set of prefixes and the set of suffixes of the string aardvark over the alphabet $\{a,...,z\}$.
 - (iii) What is the condition that a prefix is said to be a proper prefix and a suffix to be a proper suffix.
 - (iv)Write down three substrings that are not substrings of aardvark.
- 03 (i) What is meant by Chomsky hierarchy of grammars.
 - (ii) Write the names of the Chomsky hierarchy of grammars.
 - (iii) Using your answer to part (ii) name the grammar type given below.

$$G=$$

$$N=\{S\}$$

$$\sum =\{a,b\}$$

$$P = \{S \rightarrow aSb, S \rightarrow \varepsilon\}$$

(iv) Given a Grammar $G=(\{s\},\{a,b\},S,P)$ with P defines $S\rightarrow aSb$

$$S \rightarrow \varepsilon$$

Obtain a sentence in the language generated by G and the sentential form.

- 04. (i) What is a Regular Expression and a Regular Language.
 - (ii) A language is a set of strings over an alphabet. What are the conditions this set has to satisfy for the language to be regular.
 - (iii) Write the corresponding regular languages for the Regular Expressions given below.
 - (a) (a+bc)
 - (b) a(b+c)
 - (c) a^*b^*
 - (d) $a^*(b+cc)$
 - (iv) Let $\Sigma = \{a, b\}$, write the regular expression for the following sets.
 - (a) All strings in \sum *with number of a's divisible by three.
 - (b) All strings in \sum *with exactly one occurrence of the substring aaa.
 - 05. State with justification, whether each of the following statements is true or false.
 - (i) $\{a^mb^{2n} | m \ge 0 \text{ and } n \ge 0 \}$ is regular.
 - (ii) Any finite subset of {ab}* is a regular language.
 - (iii) If $L_1 = \{ \in, 0, 1 \}$ and $L_2 = \{ 01, 11 \}$. Then their composition is : $L_1 L_2 = \{ 01, 11, 001, 011, 101, 111 \}$
 - (iv) No infinite subset of $\{a^n b^n | n \ge 0\}$ is regular.
 - 06. (a) Define the behavioural equivalence between two Mealy machines.

Let M_1 and M_2 be two Mealy machines. Show that

- (i) M_1 is behaviourally equivalent to itself.
- (ii) If M_1 is behaviourally equivalent to M_2 , then M_2 is behaviourally equivalent to M_1 .
- (b) Define the homomorphism of a Mealy machine into another Mealy machine.

Let M_1 and M_2 be two Mealy machines defined in Table 6.1 and Table 6.2 respectively.

	$\delta(s, i)$		$\beta(s,i)$	
	i_1	i_2	i_1	i_2
s_1	s_1	S_2	02	o_1
s_2	s_1	s_2	o_1	O_2

Table $6.1 - M_1$

	$\delta(s, i)$		$\beta(s, i)$	
	j_1	j_2	j_1	j_2
t_1	t_2	t_1	p_2	p_1
t_2	t_2	t_1	p_1	p_2

Table $6.2 - M_2$

Let the triple $\phi = (\alpha, \sigma, \theta)$ be defined by

$$\alpha(s_1) = t_2, \ \alpha(s_2) = t_1$$

$$\sigma(i_1) = j_1, \ \ \sigma(i_2) = j_2$$

$$\theta(p_1) = o_2, \ \theta(p_2) = o_1$$

Is ϕ a state behaviour assignment? Justify your answer.

All Rights Reserved