THE OPEN UNIVERSITY OF SRI LANKA
B.Sc DEGREE PROGRAMME: LEVEL 04
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
FINAL EXAMINATION - 2014/2015
CSU2279: DATA STRUCTURES AND ALGORITHMS

DURATION: **THREE HOURS** (3 HOURS)

Date: 25th October, 2015

Time: 1.30 p.m - 4.30 p.m

Answer FOUR Questions ONLY.

Q1.

- a) What is an Algorithm?
- b) What is a Data Structure? Give three (03) examples.
- c) List down three (03) basic operations that can be performed with a data structure.
- d) What are the **five (05)** main steps involved when writing a computer program to solve a given problem?
- e) What are the aspects you should consider when selecting an algorithm for implementation?
- f) Explain the factors on which the running time of a program depends on.

Q2.

- a) Sorting methods can be classified into two (02) categories. What are those? Briefly explain them.
- b) Write a Pascal program to implement the *Bubble sort* algorithm.
- c) Compare and contrast the **Bubble sort** algorithm with the **Quick sort** algorithm.
- d) Explain how *Straight Selection sort* works on the following set of integers, when sorting them in to ascending order.

30, 11, 42, 23, 54, 92, 80, 61

Q3.

- a) Describe what do you mean by Abstract Data Type (ADT)
- b) Define the term "Encapsulation" with respect to ADT.
- c) What are the advantages of the *Doubly-linked list* compared to the *Singly linked list*?
- d) Explain two (02) disadvantages of doubly-linked lists?
- e) Explain the process of the following question (i) and (ii) by means of appropriate diagrams. (Show the pointer manipulations clearly)
 - i. Deleting an element from the **beginning** of the singly linked list
 - ii. Inserting an element into the end of a singly linked list.
- f) State whether the following statements are true or false, if it is false give the reason.
 - i. A pointer is a *cell* whose value indicates another cell.
 - ii. In singly linked list data structures a cell has two components; they are *value of the cell* and the pointer *value which refers to the previous cell*.
 - iii. In the pointer representation of a data structure, the *header* cell has the *address of* the first cell.

Q4.

- a) How does Stack data structure differ from a Queue data structure?
- b) A stack has two basic operations called **PUSH** and **POP**, using an array implementation of stacks write a Pascal procedure/ function to implement those operations on Stacks.
- c) With a suitable diagram for each part, show how elements are organized in the Queue. (Note: clearly indicate the values of front and rear variables and array indexes in diagram)
 - (i). Add three (03) integer elements 20, 40 & 60 to the Queue.
 - (ii). Dequeue one element from the Queue.
 - (iii). Make Queue empty.
- d) What is the main problem regarding *Linear Queues*?
- e) Using an appropriate diagram explain the circular array implementation of a Queue.

- a. Define the following String operations.
 - i. POS(S1, S2)
 - ii. COPY(S1, p, 1, S2)
 - iii. LENGTH(S1)
 - iv. CONCAT(S1, S2, S3)
- b. What is a **Set?** What do set *union*, *difference* and *intersection* mean?
- c. Write Pascal procedures/functions to implement the following Set operations.
 - i. INISET(S): A procedure to initialize the set S.
 - ii. UNIONSETS (S1, S2): A procedure to create the union of the two sets, S1 and S2.
 - iii. INTERSECTS (S1, S2): A procedure to create the intersection of the two sets, S1 and S2.

Q6.

a. Using the following Figure 1, explain the following terms.

Figure 1

i.	Root	vi.	Level of a binary tree
ii.	Leaf nodes	vii.	Sub tree
iii.	Degree of a node	viii.	Ancestors
iv.	Degree of a tree	ix.	Siblings
v.	Depth of a binary tree	х.	Forest

b. Answer the following questions using the following Binary tree structure B1 (figure 2).

Figure 2: B1 tree

- i. Give the preorder, inorder, postorder transversal of the tree B1.
- ii. Is B1 a binary tree? Justify your answer.
- iii. Show B1 after inserting the 9th node. Explain the concept that you used when inserting the 9th node. (Call the resultant tree B2)
- iv. Is B2 a strictly binary tree structure? Justify your answer.

*** All Rights Reserved ***