## THE OPEN UNIVERSITY OF SRI LANKA

B. Sc. Degree Programme — Level 4

Assignment II (Test) — 2014/2015

CMU 2220/CME4220 — Concepts in Chemistry



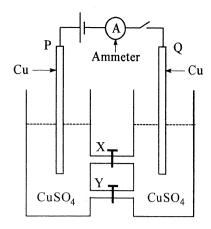
## 1 hour

## 7<sup>th</sup> March 2015 (Saturday)

1.00 p.m. — 2.00 p.m.

- $\triangle$  Answer all 25 questions (25 x 4 = 100 marks)
- Choose the most correct answer to each of the questions and mark this answer with an "X" on the answer script in the appropriate box.
- Use a **PEN** (not a PENCIL) in answering.
- Any answer with more than one "X" marked will be considered as an *incorrect* answer.
- Marks will be deducted for incorrect answers (0.6 per wrong answer).
- ➤ The use of a non-programmable electronic calculator is permitted.
- Mobile phones are **not** allowed.
- ▶ Please write your mailing address on the back of the MCQ answer sheet.

| Gas constant (R)                    | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.314 JK <sup>-1</sup> mol <sup>-1</sup>      |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Avogadro constant (N <sub>A</sub> ) | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $6.023 \times 10^{23} \text{ mol}^{-1}$       |
| Faraday constant (F)                | `.=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $96,500 \text{ C} \text{mol}^{-1}$            |
| Planck constant (h)                 | Manager of the Control of the Contro | $6.63 \times 10^{-34} \text{ Js}$             |
| Velocity of light (c)               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3.0 \times 10^8 \text{ m s}^{-1}$            |
| Protonic charge (e)                 | in marketing and a second and a second area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.602 \times 10^{-19} \text{ C}$             |
| Standard atmospheric pressure       | <u>=</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $10^5 \text{ Pa}\left(\text{N m}^{-2}\right)$ |
| $\log_{e}(X)$                       | manufacture<br>manufacture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2.303 \operatorname{Log}_{10}(X)$            |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |


- 1. What is the total charge on 1.2 mole of  $CO_3^{2-}$ ?
  - (a) 231600 C
- (b) -231600 C
- (c) 115800 C

- (d) -115800 C
- (e) -347400 C
- 2. A strong electrolyte, AB, dissociates in aqueous medium as  $AB(s) \rightarrow A^{3+}(aq) + B^{3-}(aq)$ . The ionic mobilities (in units of  $m^2 \ V^{-1} s^{-1}$ ) of  $A^{3+}(aq)$  and  $B^{3-}(aq)$  in a 0.2 mol dm<sup>-3</sup> solution of AB at  $25^{\circ}$ C are  $55.0 \times 10^{-9}$  and  $79.1 \times 10^{-9}$ , respectively. What is the molar conductivity, in units S  $m^2$  mol<sup>-1</sup>, of AB in this solution?
  - (a) 0.0388
- (b) 0.0194
- (c) 0.388
- (d) 0.0106
- (e) 0.0153

## Use the following data in answering questions 3, 4, 5 and 6.

A student electrolysed an aqueous solution of copper sulphate using two copper electrodes using the apparatus shown in the figure. The left and right hand chambers are connected with glass tubes X and Y, fitted with taps so that the electric current through each of the tubes can be stopped by closing each of them. During the electrolysis experiment, he maintained a constant ammeter reading of 2.1 A for 20 s.

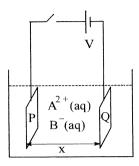
During the above mentioned experiment, the student found that the electric current through tube X remained constant at 1.3 A. Also the transport number of copper ions in tube Y was found to be 0.6.



[Relative atomic mass of copper is 63.5]

- 3. Consider the following statements about the above mentioned experiment.
  - (i) The copper ions in tube X moved toward the chamber with the electrode Q (i.e. the chamber on the right hand side of the figure).
  - (ii) Mass of electrode P increased.
  - (iii) The electric current in tube Y was equal to 0.8 A.

The correct statement/s out of (i), (ii) and (iii) above are


- (a) Only (i) and (ii).
- (b) Only (i) and (iii).
- (c) Only (ii) and (iii).

- (d) All (i), (ii) and (iii)
- (e) Only (i)
- 4. What would have happened to the ammeter reading if the student closed tap X, (without doing any other changes) during the above mentioned experiment?
  - (a) Remained to be same as 2.1 A.
  - (b) Would have increased to a value greater than 2.1 A.
  - (c) Would have decreased to a value smaller than 2.1 A.
  - (d) Would have Increased and decreased around 2.1 A.
  - (e) First increase above 2.1 A and then decrease up to a value greater than 2.1 A.
- 5. What was the mass of copper deposited (on P or Q) during the experiment?
  - (a) 0.0171g
- (b) 0.0083 g
- (c) 0.0166 g
- (d) 0.0276 g
- (e) 0.0138 g
- 6. What was the rate of flow of copper ions, in units of mol s<sup>-1</sup>, in tube Y during the experiment?
  - (a)  $4.97 \times 10^{-6}$
- (b)  $8.29 \times 10^{-6}$
- (c)  $4.14 \times 10^{-6}$

- (d)  $2.49 \times 10^{-6}$
- (e)  $6.22 \times 10^{-6}$

- 7. A silver nitrate solution was electrolysed using two silver plates. The current density (which was uniform in the solution) was determined to be  $2.5 \,\mathrm{A\,m^{-2}}$ . What is the electric field strength in the solution if the conductivity of it is  $0.05 \,\mathrm{S\,m^{-1}}$ ?
  - (a)  $5.0 \text{ V m}^{-1}$
- (b)  $0.5 \text{ V m}^{-1}$
- (c)  $50.0 \text{ V cm}^{-1}$

- (d)  $0.125 \text{ V m}^{-1}$
- (e)  $0.5 \text{ V cm}^{-1}$
- 8. Using the setup shown in the figure, a student electrolysed a dilute aqueous solution of a strong electrolyte  $AB_2$  which dissociates as  $AB_2(s) \rightarrow A^{2+}(aq) + 2B^-(aq)$ . P and Q are two platinum electrodes. The distance and the potential difference between P and Q were x and V, respectively. Consider the following statements.



- (i) The drift speed of A<sup>2+</sup>(aq) increases when V is increased keeping x constant.
- (ii) The drift speed of B<sup>-</sup>(aq) decreases when x is increased keeping V constant.
- (iii) Ionic mobility of A<sup>2+</sup>(aq) remains the same when V is increased keeping x constant.

The correct statements out of (i), (ii) and (iii) above are

- (a) Only (i) and (ii).
- (b) Only (i) and (iii).
- (c) Only (ii) and (iii).

- (d) All (i), (ii) and (iii)
- (e) Only (i)
- 9. A student prepared a solution, Z, of a *weak electrolyte*  $X_2Y$  by dissolving 1 mole of pure  $X_2Y$  in one litre of solution using distilled water.  $X_2Y$  dissociates as  $X_2Y(aq) \rightleftharpoons 2X^+(aq) + Y^{2-}(aq)$ . Consider the following statements.
  - (i) The *molar conductivity* of  $X_2Y$  in the solution increases when more and more distilled water is added to Z.
  - (ii) The *conductivity* due to  $X_2Y$  in the solution increases when more and more distilled water is added to Z.
  - (iii) The molar conductivity of  $X_2Y$ ,  $\Lambda_{X_2Y}$ , in solution Z is given by  $\Lambda_{X_2Y}=2\lambda_{X^+}+\lambda_{Y^{2^-}} \text{ where } \lambda_{X^+} \text{ and } \lambda_{Y^{2^-}} \text{ are the molar conductivities of } X^+(aq) \text{ and } Y^{2^-}(aq) \text{ ions in } Z, \text{ respectively.}$

The correct statements out of (i), (ii) and (iii) above are

- (a) Only (i) and (ii).
- (b) Only (i) and (iii).
- (c) Only (ii) and (iii).

- (d) All (i), (ii) and (iii)
- (e) Only (i)
- 10. Ionic mobility of an ionic species in a solution at a particular temperature
  - (i) depends on the solvent.
  - (ii) is defined as the drift speed per unit electric field strength.
  - (iii) has the unit  $m^2 V^{-1} s^{-1}$ .

The correct statements out of (i), (ii) and (iii) above are

- (a) Only (i) and (ii).
- (b) Only (i) and (iii).
- (c) Only (ii) and (iii).

- (d) All (i), (ii) and (iii)
- (e) only (i).

11. What is the most probable relationship if the limiting ionic mobility of an ionic species B in aqueous medium at  $25^{\circ}$ C is denoted by  $u_{B}^{0}$ ?

(a) 
$$u_{H^+}^0 > u_{OH^-}^0 > u_{CH_3COO^-}^0$$

(b) 
$$u_{CH_3COO^-}^0 > u_{H^+}^0 > u_{OH^-}^0$$

(c)
$$u_{OH^{-}}^{0} > u_{CH_{3}COO^{-}}^{0} > u_{H^{+}}^{0}$$

(d) 
$$u_{OH^{-}}^{0} > u_{H^{+}}^{0} > u_{CH_{3}COO^{-}}^{0}$$

(e) 
$$u_{H^+}^0 > u_{CH_3COO^-}^0 > u_{OH^-}^0$$

- 12. Consider the following statements about the moving boundary method for the determination of ionic mobility of an ionic species in a solution A.
  - (i) One may use a colourless following solution in the case where A is also colourless.
  - (ii) The density of the following solution must always be greater than that of solution A.
  - (iii) Always solution A must be kept in the compartment above the compartment having the following solution.

The correct statements out of (i), (ii) and (iii) above are

- (a) Only (i) and (ii).
- (b) Only (i) and (iii).
- (c) Only (ii) and (iii).

- (d) All (i), (ii) and (iii)
- (e) Only (i).
- 13. Consider a dilute aqueous solution of  $Mg(NO_3)_2$  and  $AlCl_3$ . If a constant current of I is passed through the solution for a short period of time  $\delta t$ , then the transport number of  $Al^{3+}$ ,  $t_{Al^{3+}}$ , in this solution may be written as
  - (i)  $t_{Al^{3+}} = Q_{Al^{3+}}/(I \delta t)$  where  $Q_{Al^{3+}}$  is the total charge carried by  $Al^{3+}$  ions (through a cross section of the solution) during the time interval  $\delta t$ .
  - (ii)  $t_{Al^{3+}} = \kappa_{Al^{3+}} / \left(\kappa_{AlCl_3} + \kappa_{Mg(NO_3)_2}\right)$  where  $\kappa_{\alpha}$  is the conductivity of chemical species  $\alpha$  in the solution.
  - (iii)  $t_{Al^{3+}} = I_{Al^{3+}} / I$  where  $I_{Al^{3+}}$  is the current carried by  $Al^{3+}$  ions during the passage of the current I.

The correct statements out of (i), (ii) and (iii) above are

- (a) Only (i) and (ii).
- (b) Only (i) and (iii).
- (c) Only (ii) and (iii).

- (d) All (i), (ii) and (iii)
- (e) Only (i).
- 14. The molar conductivities (in units of S m<sup>2</sup> mol<sup>-1</sup>) of calcium and thiocyanate ions, in a solution of Ca (CNS)<sub>2</sub> at  $25^{\circ}$ C and at 1 atm, are  $1.2 \times 10^{-2}$  and  $6.2 \times 10^{-3}$  respectively. What is the molar conductivity (in units of S m<sup>2</sup> mol<sup>-1</sup>) of calcium thiocyanate in this solution if it behaves as a strong electrolyte?
  - (a) 0.0182
- (b) 0.0170

(c) 0.182

- (d) 0.0034
- (e) 0.0244

- 15. Consider the following mathematical relationships made on a dilute aqueous solution of  $Cu(NO_3)_2$ , with all the symbols having their usual meanings.
  - $(i) \quad \kappa_{Solution} = \kappa_{Cu^{2+}}^{} + \kappa_{NO_3^-}^{} + \kappa_{H^+}^{} + \kappa_{OH^-}^{}. \label{eq:kappa}$
  - (ii)  $\kappa_{Cu^{2+}} = 2 u_{Cu^{2+}} c_{Cu^{2+}} F$
  - (iii)  $\kappa_{Cu(NO_3)_2} = \kappa_{Cu^{2+}} + \kappa_{NO_3}$

The correct relationships out of (i), (ii) and (iii) above are

- (a) Only (i) and (ii).
- (b) Only (i) and (iii).
- (c) Only (ii) and (iii).

- (d) All (i), (ii) and (iii)
- (e) Only (i).
- 16. Which pairing of quantity and its unit is incorrect?
  - (a) Resistivity: S m
  - (b) Potential difference: JC<sup>-1</sup>
  - (c) Drift speed (velocity): m s<sup>-1</sup>
  - (d) Ionic mobility: m<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>
  - (e) Molar conductivity: S m<sup>2</sup> mol<sup>-1</sup>
- 17. Which of the following is correct for a spontaneous process in a closed system?
  - (a) Entropy of the system always increases
  - (b) Free energy of the system always increases.
  - (c) Total (i.e. system + surroundings) entropy change is always negative
  - (d) Total (i.e. system + surroundings) entropy change is always positive
  - (e) No change in the entropy of the system.
- 18. For a closed system at constant temperature and pressure the Gibbs free energy change  $\Delta G_{sys}$  is
  - (i) negative when a process is <u>not</u> spontaneous.
  - (ii) positive when a process is spontaneous
  - (iii) zero when a system is at equilibrium

The correct statement/s out of (i), (ii) and (iii) above is/are

- (a) Only (i).
- (b) Only (ii).
- (c) Only (iii).

- (d) Only (i) and (iii)
- (e) Only (ii) and (iii).
- 19. In a closed system at constant pressure a reaction occurs spontaneously if,
  - (a)  $T \Delta S < \Delta H$  and  $\Delta H$  is positive and  $\Delta S$  is positive.
  - (b)  $T \Delta S > \Delta H$  and  $\Delta H$  is positive and  $\Delta S$  is negative.
  - (c)  $T \Delta S > \Delta H$  and  $\Delta H$  is positive and  $\Delta S$  is positive.
  - (d)  $T\Delta S = \Delta H$  and  $\Delta H$  is positive and  $\Delta S$  is positive.
  - (e)  $T \Delta S = \Delta H$  and  $\Delta H$  is positive and  $\Delta S$  is negative.

- 20. What is the entropy change for the fusion of 1 mol of a solid melting at 27°C if the latent heat of fusion of the solid is 2930 J mol<sup>-1</sup>?
  - (a)  $9.77 \text{ J K}^{-1}$
- (b)  $10.73 \text{ J K}^{-1}$
- (c)  $2930 \text{ J K}^{-1}$

- (d)  $108.5 \text{ J K}^{-1}$
- (e)  $29.30 \text{ J K}^{-1}$
- 21. What is the entropy change when 0.5 mol of an ideal gas expands at constant temperature from an initial volume of 10 dm<sup>3</sup> to a final volume of 75 dm<sup>3</sup>?
  - (a) 7.367 J/K
- (b) 8.376 J/K
- (c) 4.188 J/K

- (d) 16.75 J/K
- (e) 0 J/K
- 22. Which of the process/s given below follow/s the equation  $\Delta S = q_{rev} / T$ ?
  - (i) Reversible.
- (ii) Isothermal
- (iii) Isobaric

The correct process/s out of (i), (ii) and (iii) above is/are

- (a) Only (i).
- (b) Only (ii).
- (c) Only (iii).

- (d) Only (i) and (ii)
- (e) Only (ii) and (iii).
- 23. The Kirchoff's equation is given as,

(a) 
$$\Delta H_{T_2} = \Delta H_{T_1} + \Delta C_P (T_2 - T_1)$$

(b) 
$$\Delta H_{T_1} = \Delta H_{T_2} + \Delta C_P (T_2 - T_1)$$

(c) 
$$\Delta H_{T_2} = \Delta H_{T_1} + \Delta C_P \left(T_1 - T_2\right)$$

(d) 
$$\Delta H_{T_1} = \Delta H_{T_2} + \Delta C_P \left(T_2 + T_1\right)$$

(e) 
$$\Delta H = R \Delta C_P (T_2 - T_1)$$

24. The Maxwell relationship that can be derived from the equation, dG = V dP - S dT is,

(a) 
$$\left(\frac{\partial P}{\partial T}\right)_{V} = \left(\frac{\partial S}{\partial V}\right)_{T}$$

(b) 
$$\left(\frac{\partial T}{\partial S}\right)_{V} = \left(\frac{\partial V}{\partial P}\right)_{T}$$

$$(c) \left( \frac{\partial V}{\partial T} \right)_{T} = - \left( \frac{\partial S}{\partial P} \right)_{P}$$

(d) 
$$\left(\frac{\partial V}{\partial T}\right)_{P} = -\left(\frac{\partial S}{\partial P}\right)_{T}$$

(e) 
$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$$

- 25. The Clapeyron equation gives the variation of
  - (a) vapour pressure of a reversible phase transition of a univariant system.
  - (b) vapour pressure of an isothermal system.
  - (c) temperature of an isobaric system.
  - (d) enthalpy change of a reversible phase transition.
  - (e) entropy change of a reversible phase transition.