THE OPEN UNIVERSITY OF SRI LANKA B.Sc. DEGREE PROGRAMME PURE MATHEMATICS -LEVEL 05 PUU3244/PUE5244 — Number Theory & Polynomials NO BOOK TEST-2015/2016

DURATION: ONE AND HALF (1 ½) HOURS

Date:- 06.11. 2016

Time:- 10:30a.m. -12:00noon.

ANSWER ALL QUESTIONS.

- (01). (a) Define each of the followings:
 - (i) Greatest Common Divisor.
 - (ii) Least Common Multiple.
 - (iii) Pair wise relatively prime.
 - (iv) Mutually relatively prime.

(b) If $a, b, c \in \mathbb{Z} \setminus \{0\}$ prove that (a, b, c) = ((a, b), c).

(c) Compute d = (1044, 1116, 1470) and express it in the form

d = 1044a + 1116b + 1470c.

(02). (a) Prove each of the following:

- (i) If $a + c \equiv b + c \pmod{m}$ then $a \equiv b \pmod{m}$.
- (ii) If $ac \equiv bc \pmod{m}$ and (c, m) = 1 then $a \equiv b \pmod{m}$.

(b) If $n \in \mathbb{N}$ prove that

- (i) $10^n \equiv 1 \pmod{m}$.
- (ii) $6^n \equiv 6 \pmod{10}$.

- (c) State Eisentein's irreducibility criteria.
- (d) Determine whether the following polynomials are irreducible over $\mathbb{Q}[x]$.
 - (i) $f(x) = 8x^3 + 6x^2 9x + 24$
 - (ii) $f(x) = x^3 + 3x^2 8$
- (03). (a) Find all rational roots of the polynomial $6x^4 + 23x^3 + 28x^2 + 13x + 2$ over \mathbb{Q} .
 - (Hint :Let $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$ and $n \ge 1$. If $\alpha \in \mathbb{Q}$ is a zero of f(x) and $\alpha = \frac{r}{s}$ with (r, s) = 1, then $r \mid a_0$ and $s \mid a_n$.)
 - (b) If f(x) = x⁴ + 4x³ + 3x² + x + 1 and g(x) = 2x³ + x² x 3 are polynomials over Z₅[x]. Find the greatest common divisor d of f(x) and g(x) and express it in the form d = fu + gv with u, v ∈ Z₅[x].