
THE OPEN UNIVERSITY OF SRI LANKA

B.Sc Degree Programme — Level 4

MCQ Answer Sheet: Mark a cross (\times) over the box that corresponds to the most suitable answer.

	-
Reg. No.	

FOR EXAMINER'S USE ONLY								
Answers	No.	Marks						
Correct								
Wrong								
Unmarked		0.0						
Total								

																							,
1	a	b	c ·	d	e	2	a	b	c	d	e	3	а	b	c	d	e	4	a	b	c	đ	e
5	a	b	С	đ	e	.6	a	b	c.	d	e	7	a	b	c	d	e	8	a	b	c	d	e
9	a	b	e	d	e	10	a	b	c	d	e	11	a	b	c	d	e	12	a	b	c	d	e
13	a	b	С	d	e	14	a	b	c	d	e	15	a	b	С	d	e	16	a	b	c	đ	e
17	a	ь	c	d	e	18	a	b	c	d	e	19	а	b	c	d	e	20	a	b	c	d	e
21	a	b	c	d	e	22	a	b	c	d	e	23	a	b	c	d	e	24	a	b	c	d	e
25	9	h	c	d	e										,								

THE OPEN UNIVERSITY OF SRI LANKA

B. Sc. Degree Programme — Level 4
Assignment I (Test) — 2015/2016
CMU 2220/CME 4220 — Concepts in Chemistry

1 hour

2nd April 2016 (Saturday)

1.00 p.m. - 2.00 p.m.

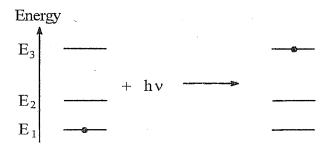
- \triangle Answer all 25 questions (25 x 4 = 100 marks)
- Example Choose the most correct answer to each of the questions and mark this answer with an "X" on the answer script in the appropriate box.
- ☑ Use a **PEN** (not a PENCIL) in answering.
- Any answer with more than one "X" marked will be considered as an *incorrect* answer.
- Marks will be deducted for incorrect answers (0.6 per incorrect answer).
- The use of a non-programmable electronic calculator is permitted.
- Mobile phones are **not** allowed.

8.314 JK⁻¹mol⁻¹ Gas constant (R) $6.023 \times 10^{23} \text{ mol}^{-1}$ Avogadro constant (N_A) 96,500 Cmol⁻¹ Faraday constant (F) $6.63 \times 10^{-34} \text{ Js}$ Planck constant (h) $3.0 \times 10^8 \text{ m s}^{-1}$ Velocity of light (c) $1.602177 \times 10^{-19} \text{ C}$ Protonic charge (e) $10^5 \, \text{Pa} \left(\text{N m}^{-2} \right)$ Standard atmospheric pressure $2.303 \operatorname{Log}_{10}(X)$ $Log_{e}(X)$

- 1. Which of the following processes involve the absorption of electromagnetic radiation?
 - (i) Photosynthesis.
 - (ii) Conversion of solar energy into electrical energy using solar panels.
 - (iii) Seeing an object by a human being.

The correct statements out of (i), (ii) and (iii) above are

- (a) Only (i) and (ii).
- (b) Only (i) and (iii).
- (c) Only (ii) and (iii).


- (d) All (i), (ii) and (iii)
- (e) None of the answers (a), (b), (c) or (d) is correct.
- 2. The number of photons crossing an area of 2.0 cm^2 within 3s in a beam of a radiation having the wave length of 20 nm is 4.45×10^9 . What is the intensity of the beam?
 - (a) $1.48 \times 10^{-4} \text{ W s}^{-1}$
- (b) $2.21 \times 10^{-4} \text{ W s}^{-1}$
- (c) $1.48 \times 10^{-5} \text{ W s}^{-1}$

- (d) $4.89 \times 10^{-5} \mathrm{~W~s^{-1}}$
- (e) $7.38 \times 10^{-5} \text{ W s}^{-1}$
- 3. What is/are the physical property/properties of a molecule that absorption of microwaves can change?
 - (a) Nuclear energy
- (b) Electronic energy
- (c) Vibrational energy

- (d) Rotational energy
- (e) Electronic and vibrational energy

Use the following data in answering questions 4, 5 and 6.

Absorption of a photon, of frequency ν , by a molecule having only three energy levels, E_1 , E_2 and E_3 , is schematically represented (on an energy level diagram) in the figure in standard notation. Here, Planck constant is denoted by h.

- 4. Consider the following statements about the above mentioned absorption process.
 - (i) The Bohr condition for the absorption is $E_1 E_3 = h\nu$.
 - (ii) $v > [E_2 E_1]/h$.
 - (iii) The process may be called stimulated absorption.

The correct statements out of (i), (ii) and (iii) above are

- (a) Only (i) and (ii).
- (b) Only (i) and (iii).
- (c) Only (ii) and (iii).

- (d) All (i), (ii) and (iii)
- (e) Only (i).
- 5. Consider the following statements about the above mentioned absorption process.
 - (i) The photon with frequency ν cannot bring about a transition $E_1 \to E_2$ in the molecule through stimulated absorption.
 - (ii) $v < [E_3 E_2]/h$.
 - (iii) The molecule in energy level E_3 may undergo spontaneous emission with the emission of a photon with frequency ν .

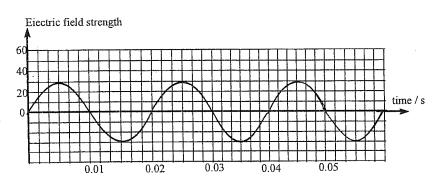
The correct statements out of (i), (ii) and (iii) above are

- (a) Only (i) and (ii).
- (b) Only (i) and (iii).
- (c) Only (ii) and (iii).

- (d) All (i), (ii) and (iii)
- (e) Only (i).
- 6. Which of the following best represents the value of E_1 , if $E_3 = 3.50 \times 10^{-21}$ J and $v = 2.50 \times 10^{12}$ Hz?

$$V = 2.50 \times 10^{-12} \text{ J}$$

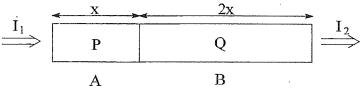
(a) $1.55 \times 10^{-21} \text{ J}$


(b)
$$2.67 \times 10^{-21} \text{ J}$$

(c)
$$1.00 \times 10^{-21}$$
 J

(d)
$$1.34 \times 10^{-21} \text{ J}$$

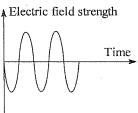
(e)
$$1.84 \times 10^{-21} \text{ J}$$


7. The electric field strength versus time of a particular monochromatic radiation is given in the figure to the right. What is the frequency of the radiation?

- (a) 20Hz
- (b) 25Hz
- (c) 33.3Hz
- (d) 50Hz
- (e) 100Hz

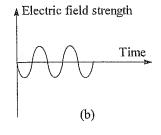
Use the following data in answering questions 8, 9, 10 and 11.

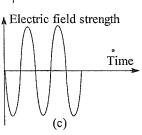
A student filled two sample cells, A and B, with solutions of compounds P and Q, kept the two cells together and placed in this composite cell (i.e. A and B) in



the path of a (parallel) beam of monochromatic electromagnetic radiation of frequency ν

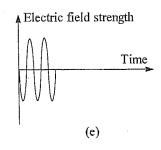
The intensity of the beam was $I_1 = 2.5 \times 10^{-5} \text{ W m}^{-2}$; see the figure. The intensity of the outgoing beam is I_2 . The path lengths of the beam in A and B are x cm and 2x cm, respectively. The absorbance of the P and Q solutions in cells A and B are 0.8 and 0.2 respectively. The concentrations of P and Q in the solutions are 1.0 mol dm⁻³. The walls of the cells do not absorb radiation at frequency ν .


- 8. Which of the following best represents the intensity, I_2 , of the outgoing beam?
 - (a) $3.0 \times 10^{-6} \,\mathrm{W \, m^{-2}}$
- (b) $1.6 \times 10^{-5} \,\mathrm{W \, m^{-2}}$
- (c) $2.5 \times 10^{-6} \,\mathrm{W \, m^{-2}}$


- (d) $3.5 \times 10^{-6} \,\mathrm{W \, m^{-2}}$
 - (e) $4.5 \times 10^{-6} \,\mathrm{W \, m^{-2}}$
- 9. Which of the following statements is true?
 - (a) The molar extinction coefficient of Q is greater than that of P.
 - (b) The molar extinction coefficient of Q is less than that of P.
 - (c) The molar extinction coefficient of Q is equal to that of P.
 - (d) Given data is not sufficient to draw any conclusions about the relative magnitude of the molar extinction coefficients of P and Q.
 - (e) None of the above statements is true.
- 10. The electric field strength versus time of the incident radiation beam (at a point in space) with intensity I_1 is shown in the figure to the right. What figure best represents the electric field strength versus time of the outgoing beam of intensity I_2 , on the same field strength and time scales.

Electric field strength

Time

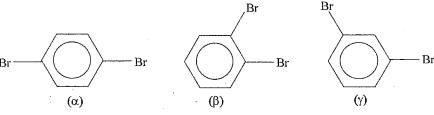


Electric field strength

Time

(d)

- 11. Another student altered the above mentioned arrangement. The <u>only</u> change he made was to place cell B in front of cell A so that B is exposed to the incoming beam of radiation of intensity I_1 . He measured the intensity of the outgoing beam (i.e. now from A) to be I_3 . Consider the following statements about the new setup.
 - (i) The absorbance of B in the new setup should be greater than 0.2 since it is now directly exposed to the incoming beam.
 - (ii) $I_3 = I_2$
 - (iii) The number of photons absorbed in unit time by compound Q in B in the new setup is greater than the number of photons it absorbed in unit time in the old setup.


The correct statements out of (i), (ii) and (iii) above are

- (a) Only (i) and (ii).
- (b) Only (i) and (iii).
- (c) Only (ii) and (iii).

- (d) All (i), (ii) and (iii)
- (e) Only (i).
- 12. Which of the following best represents the bond distance of a diatomic molecule having dipole moment of 5.325 D and a partial charge of 0.802×10^{-19} C?

$$1 D = 3.336 \times 10^{-30} C m$$

- (a) 0.221 cm
- (b) 0.034 cm
- (c) 0.0.034 nm
- (d) 0.022 nm
- (e) 0.221 nm
- 13. Denote the dipole moments of the following molecules, α , β and γ , by μ_{α} , μ_{β} and μ_{γ} respectively.

What is the correct relationship among the dipole moments?

- (a) $\mu_{\alpha} < \mu_{\beta} < \mu_{\gamma}$
- (b) $\mu_{\alpha} > \mu_{\beta} < \mu_{\gamma}$
- (c) $\mu_{\alpha} > \mu_{\beta} > \mu_{\gamma}$

- (d) $\mu_{\alpha} < \mu_{\nu} < \mu_{\beta}$
- (e) $\mu_{\alpha} < \mu_{\beta} = \mu_{\gamma}$
- 14. A student observed a peak, at frequency ν , in the spectrum of a gaseous sample of a diatomic molecule. Consider the following statements about his observation.
 - (i) Increasing temperature will shift the said peak to higher frequency.
 - (ii) Increasing pressure will increase the height of the peak.
 - (iii) Increasing temperature will increase the width of the peak.

The correct statements out of (i), (ii) and (iii) above are

- (a) Only (i) and (ii).
- (b) Only (i) and (iii).
- (c) Only (ii) and (iii).

- (d) All (i), (ii) and (iii)
- (e) Only (i).

- 15. What is the process indicated by the reaction, $M + h\nu \rightarrow M^*$?
 - (a) Stimulated absorption
 - (b) Stimulated emission
 - (c) Spontaneous emission
 - (d) Spontaneous absorption
 - (e) None of the answers (a), (b), (c) or (d) is correct
- 16. During an experiment a student observed that some molecules in a sample undergo stimulated emission when placed in a monochromatic beam of radiation of frequency v. Consider the following statements about this experiment.
 - (i) The frequency of the radiation emitted during stimulated emission is ν .
 - (ii) Some molecules in the above mentioned sample have been in an excited state.
 - (iii) Some molecules in the sample may have undergone stimulated absorption during the above mentioned process.

The correct statements out of (i), (ii) and (iii) above are

- (a) Only (i) and (ii).
- (b) Only (i) and (iii).
- (c) Only (ii) and (iii).

- (d) All (i), (ii) and (iii)
- (e) Only (i).
- 17. The Boltzmann distribution function, in standard notation is given by the equation,

$$N_i = N_j \left(\frac{g_i}{g_j}\right) Exp\left(-\frac{E_i - E_j}{kT}\right)$$
. Consider the following statements about this equation.

- (i) N_i is the number of molecules in the energy level, i.
- (ii) Always, one must make sure that $E_i > E_j$ in applying the equation.
- (iii) g_j is the degeneracy of the energy level, j.

The correct statements out of (i), (ii) and (iii) above are

- (a) Only (i) and (ii).
- (b) Only (i) and (iii).
- (c) Only (ii) and (iii).

- (d) All (i), (ii) and (iii)
- (e) Only (i).
- 18. A certain reaction, $[A \rightarrow P]$ is found to follow the differential rate law, $-\frac{d[A]}{dt} = k[A]^3$.

The SI unit for the rate constant, k, for this reaction is

- (a) $\text{mol}^{-2} \, \text{dm}^6 \, \text{s}^{-1}$
- (b) $\text{mol}^{-1} \text{ m}^3 \text{ s}^{-1}$
- (c) $\text{mol}^2 \text{ m}^6 \text{ s}^{-1}$

- (d) $\text{mol}^{-2} \, \text{m}^6 \, \text{s}^{-1}$
- (e) $\text{mol}^1 \, \text{dm}^{-3} \, \text{s}^{-1}$
- 19. Given that the initial concentration of A is a, the expression for half life $[t_{1/2}]$ for the above reaction is
 - (a) $t_{1/2} = \frac{\ln(2)}{k}$
- (b) $t_{1/2} = \frac{3}{2 k a^2}$
- (c) $t_{1/2} = \frac{1}{k a}$

- (d) $t_{1/2} = \frac{3}{k a^2}$
- (e) $t_{1/2} = \frac{a}{k}$

20. Which of the following equation corresponds the relationship between the rate constant and temperature according to Arrhenius?

(a)
$$k = A e^{-\frac{E}{RT}}$$

(b)
$$\frac{d[A]}{dt} = k [A]$$
 (c) $A = k e^{\frac{E}{RT}}$

(c)
$$A = k e^{\frac{E}{RT}}$$

(d)
$$\ln(k) = e^{-\frac{E}{RT}}$$
 (e) $k = A e^{\frac{E}{RT}}$

(e)
$$k = A e^{\frac{E}{RT}}$$

- 21. Consider the following statements.
 - (i) The rate of an elementary reaction of the form $2B+C \rightarrow Q$ is proportional to $[B]^2[C]$
 - (ii) The overall order of the above reaction and its molecularity are the same.
 - (iii) If the concentration of C is in excess relative to B in the above reaction, then it can be considered as a pseudo first order reaction.
 - (iv) The equilibrium constant, K, for a reversible reaction $A + B \stackrel{k_1}{\longleftarrow} C + D$ where k_1 and k2 are the rate constants for the forward and backward reactions respectively is equal to $\frac{k_1}{k_2}$.

The correct statements out of (i), (ii), (iii) and (iv) above are

- (a) Only (i), (ii) and (iii).
- (b) Only (i), (iii) and (iv). (c) Only (i), (ii) and (iv).

- (d) Only (ii), (iii) and (iv)
- (e) Only (i) and (ii).
- 22. A kinetic experiment is carried out involving the hydrolysis reaction between an ester (relative molar mass = 72 and density = 0.9 g cm^{-3} = at 300 K) and sodium hydroxide. You have been asked to mix V cm³ of the ester, 100 cm³ of 2.5 M NaOH and distilled water such that the total volume is 250.0 cm³ and the concentration of NaOH equals that of the alkyl acetate. The initial concentration of NaOH in the reaction mixture is
 - (a) 1.2 M
- (b) 1.0 M
- (c) 1.5 M
- (d) 0.25 M
- (e) 0.1 M

- 23. The value of V in Q question 23 above (in cm³) is
 - (a) 25.0
- (b) 50.0
- (c) 30.0
- (d) 15.0
- (e) 20.0

Use the following data on the reaction, $X+Y \xrightarrow{k} Z$ in answering questions 24 and 25.

Kinetic study of the above reaction gave the following results.

X/mol dm ⁻³	Y/mol dm ⁻³	Rate $\times 10^5$ /mol dm ⁻³ s ⁻¹
2.0	2.0	1.5
4.0	2.0	3.0
2.0	8.0	24.0

24. Which of one of the following best represents the rate law of the above reaction?

(a) Rate =
$$k[X][Y]$$

(b) Rate =
$$k[X]^2[Y]$$

(c) Rate =
$$k[X][Y]^3$$

(d) Rate =
$$k[X][Y]^2$$

(e) Rate =
$$k[X]^2[Y]^3$$

25. The rate constant k (in mol⁻²dm⁶ s⁻¹) for the above reaction is,

(a)
$$3.75 \times 10^{-6}$$

(b)
$$3.75 \times 10^{-5}$$

(c)
$$1.875 \times 10^{-6}$$

(d)
$$1.875 \times 10^6$$

(e)
$$1.875 \times 10^{-5}$$