

The Open University of Sri Lanka B.Sc. Degree Programme - Level 05 Open Book Test-2016/2017 APU3240/APE5240 — Numerical Methods

Duration: One and Half (1 1/2) Hours

Date: 30. 04. 2017 Time: 10.30 a.m. -12.00 noon

ANSWER ALL QUESTIONS.

- 1. (a) Find the root of the equation $x^3 x 1 = 0$ lying in the interval [1, 2], correct to 3 decimal places using bisection method.
 - (b) Show that the equation $e^x + x 2 = 0$, has a root in the interval [0, 1]. Determine the root correct to 4 decimal places taking $x_0 = 0.4$, using Newton -Raphson method.
 - (c) Find the maximum number of iterations required to find the root in the interval [1, 2] of the equation $x^3 + 4x^2 10 = 0$ correct to 4 decimal places using iterative method.
- 2. (a) State Newton-Gregory backward interpolating polynomial. Hence, find $e^{2.00}$ corresponding to the data points (0.1, 1.1052), (0.6, 1.8221), (1.1, 3.0042), (1.6, 4.9530) and (2.1, 8.1662).
 - (b) State Stirling's interpolating polynomial. Hence, find $e^{1.3}$ corresponding to the data points given in part (a).
- 3. (a) State Newton's divided difference formula. Hence, find the polynomial of degree four, passing through the points (1.0, 0.7651977), (1.3, 0.6200860), (1.6, 0.4554022), (1.9, 0.2818186) and (2.2, 0.110362).
 - (b) Write down an expression to find derivative of a point using Newton-Gregory forward interpolating formula. Using the values given in the following table find the value of sec 31°.

$ heta^\circ$	31°	32°	33°	34°
tan $ heta^\circ$	0.6008	0.6249	0.6494	0.6745