THE OPEN UNIVERSITY OF SRI LANKA
DEPARTMENT OF COMPUTER SCIENCE
B.Sc. DEGREE PROGRAMME: LEVEL 03
CPU1142- DATA STRUCTURES AND ALGORITHMS
NO BOOK TEST II – 2016/2017

DURATION:One Hour (1 Hour)

Date: 29.10.2017	Time: $4.00 \text{ p.m.} - 5.00 \text{ p.m.}$
------------------	---

Answer All Questions.

Write your answers in the answer sheets provided.

- 1. Fill in the blanks with appropriate terms.
 - a) For a circular queue if(q.front== q.rear) checks the queue condition.
 - b) The of a node is all the nodes along the route from the root to that node.
 - c) In strictly binary trees a node representing an is a non-leaf node.
 - d) If every edge of the graph is an ordered pair of vertices, we call it as a graph.
 - e) A is a path in which first and last vertices are the same.
 - f) If there is a path from every vertex to every other vertex, we call it as a graph.
 - g) If the root of a tree is removed, the resultant is a.....
 - h) The maximum degree of a node in a binary tree is......
 - i) When each node in the tree is visited exactly once in a systematic manner, we call it as
 - j) The number of of a node is called as its degree.

2.

Array implementation of a queue can be declared in C language as follows.

```
# define MAXSIZE 100
Struct queue {
         int front;
         int rear;
         int items [MAXSIZE];
        };
Struct queue q;
```

By using the above declaration, answer the following questions.

- a) Show the **enqueue** operation of the queue using C programming language. Clearly show the required conditions and actions.
- b) Show the **dequeue** operation of the queue using C programming language. Clearly show the required conditions and actions.

- 3.
- a) Construct a binary search tree for the following set of integers. 60, 10, 80, 15, 100, 05, 70, 110, 65, 02, 20, 90, 08, 75, 12
- b) What will be the output when you traverse the above constructed binary search tree in the following orders?
 - I. Pre order
 - II. In order
 - III. Post order
- b) Is the above constructed binary tree a complete binary tree? Give reasons.
- c) What are the leaf and non-leaf nodes of the above constructed binary tree?
- 4.
- a) Draw the corresponding **Adjacency matrix representation** for the following weighted digraph.

- 5.
- a) Consider the following expression in **infix** form and convert it into the **postfix** form. Clearly show the 7 steps required for the conversion.

A+B*C\$D-E\$F/G-H

*** All Rights Reserved ***