The Open University of Sri Lanka

B.Sc. Degree Programme: Level 05

Department of Mathematics and Computer Science

CSU3275/PMU3293/PME5293: AUTOMATA THEORY

Final Examination -2015/2016

Duration: Three Hours (3hours)

Date: 20th January 2017

Time:1.30pm-4.30pm

Answer Four Questions only

01. (a) Define a DFA (Deterministic Finite Automation) and describe the operation of it. Design a DFA to accept the strings over {0,1} consisting of an even number of 0s and an even number of 1s. Test your DFA with each of the following input strings. Clearly show the work you have done.

- (i) 00
- (ii) 10101
- (iii) (00)*0110
- (b) Define the language accepted by a DFA.

What is the language accepted by the DFA shown in Figure 1

Figure 1

02 i (a) Define Mealy type sequential machine.

- (b) Define Moor type sequential machine.
- (c) Compare Mealy type sequential machines and Moor type sequential machines.

ii. Consider the flow table given below.

State	Inp	outs	Outputs
	0	1	
0	0	2	0
1	0	2	1
2	1	3	0
3	1	3	1

- (a) What is the type of this machine?
- (b) Draw the state graph for this machine.
 - iii. Draw a DFA to accept strings of 0's and 1's ending with the string 011.
 - **03.** (i) Compare the differences of states, inputs, outputs and state/output transitions of two Mealy machines in parallel and serial composition.
 - (ii) The following is a transition of two Mealy machines M1 and M2.

M1

	а	b	С	a	b .	С
Q0	Q1	Q3	Q2	0	0	- 1
Q1	Q3	Q2	Q3	1	1	0
Q2	Q3	Q3	Q0	0	0	1
Q3	Q3	Q3	Q3	1	1	1

M2

	0	1	0	1
00	00	10	0	0
01	00	10	1	1
10	01 .	11	0	0
11	01	11	1	1

- a. If M1 is to be serially composite with M2, what would be the states of the composite machine?
- b. Give the state and output transition tables of the composition machine.
- 04. (i) What do you mean by finite automata?
 - (ii) What are the special characteristics of Non-Deterministic Finite Automata?
 - (iii) Describe the difference between NDFA and DFA.
 - (iv)Construct a DFA that accepts strings over the alphabet {0,1} that have at least one 1 and an even number of 0's after the last 1.
 - 05. Suppose M is any mealy machine and S is its set of states. Also suppose there is a partition π of S
 - (i) What do you mean by a partition π of S
 - (ii) Define a quotient machine by π
 - (iii) Define another mealy machine M'{S'I'O' $\delta'\beta'$ } and define π as Ker φ as the Kernel of φ , to be the partition { $\alpha^{-1}(s), s \in S'$ }
 - (a) Show that $Ker \varphi$ is SP
 - (b) Is Ker φ output consistent?
 - \bigcirc If M \rightarrow M' is a reduction show that M' $\approx \frac{M}{Ker}$
 - **06**. (i) What is meant by a 'Poset'?
 - (ii) Prove that $(N^+,!)$ is a Poset where N^+ is the set of all positive, non zero, whole numbers and x y means that x divides y.
 - (iii) Suppose ($(X), \le$) is a Poset, where (X) denotes the set of partitions of a set X, then prove that for $\forall x \in (X)$,
 - (a) $I_x \le \pi$ and
 - $(b)\pi \leq T_x$ where I_x and T_X carry their usual meaning
 - (iv) Hence prove that I_x and T_x can be treated as lower and upper bounds for π .
 - ***Copy rights Reserved***