THE OPEN UNIVERSITY OF SRI LANKA DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE BACHELOR OF SCIENCE DEGREE PROGRAMME – Level 05 FINAL EXAMINATION 2015/2016

CPU3144 - THEORY OF COMPUTING

DURATION: TWO HOURS ONLY (2 HOURS)

DATE: 07.01.2017

TIME: 01.30 pm - 03.30pm

ANSWER FOUR QUESTIONS ONLY.

01.

- I. What is Determinism and Non determinism? What are the differences between them?
- II. Consider the Deterministic Finite Automata $M = (\{q_0,q_1,q_2\},\{0,1\},\delta,q_0,\{q_2\})$ where δ is given by

$$\delta(q_0, 0) = q_0$$

$$\delta(q_0, 1) = q_1$$

$$\delta(q_1,0)=q_0$$

$$\delta(q_1, 1) = q_2$$

$$\delta(q_2, 0) = q_2$$

$$\delta(q_2, 1) = q_1$$

represent the above details in a transition graph.

- III. If δ^* is the extended transition function, write the three conditions that should satisfied by δ^* .
- IV. Use the three conditions that you gave in partIII to check whether the string 101 is accepted by the machine M.
- **02.** I. Define the following terms with an example for each.
 - a) String
 - b) Alphabet
 - c) Power set
 - d) Language
 - e) Null string
 - II. What is the difference between a string and a word of a language?

- III. Write the difference between an alphabet and an element of a set.
- VI. For each of the following conditions find all the strings x over the alphabet

 $\sum = \{a, b\}$

- a) No symbol is repeated in x.
- b) The length of x is 3.

03.

- I. Explain Chomsky Hierarchy in brief.
- II. In derivation of grammars what is meant by sentential form and the sentence?
- III. The grammar G is defined as $V_n = \{S,B,C\}$ and $V_t = \{a,b,c\}$ where V_n and V_t are non-terminals and terminals . S is the start symbol and P consists of
 - a) $S \rightarrow aBC$
 - b) $S \rightarrow aSBC$
 - c) $aB \rightarrow ab$
 - d) $bB \rightarrow bb$
 - e) $CB \rightarrow BC$
 - f) $b_{\mathbf{C}} \rightarrow b_{\mathbf{C}}$
 - g) $cC \rightarrow cc$
 - Find one derivation for aaabbbccc.

04.

- I. Define Regular Expression and Regular Language and show that the language $L=\{a\omega a: \omega \in \{a,b\}^*\}$ is regular.
- II. How can you create a regular expression for a particular language?
- III. Write the corresponding finite automata for the regular expression aa((a+b)(a+b))*.
- VI. Give the difference between context free languages and regular languages.

05.

I. What is meant by a Finite State Machine (FSM)?

- II. Give two names of FSM and explain their functionalities.
- III. Write three types of automata that you have studied under the course Theory of Computing.

06.

- I. What do you understand by the term "abstract" in the abstract machine?
- II. Give two examples from your day to day life where abstract machines are used, with explanation of how these are being used.
- III. Show a derivation tree for the string aabbb with the grammar

 $S \rightarrow AB/\lambda$

 $A \rightarrow aB$

 $B \rightarrow Sb$

IV. Give a brief description of the language generated by grammar in part III.

*** All Rights Reserved ***