The Open University of Sri Lanka
B.Sc./B.Ed. Degree Programme
Final Examination – 2015/2016
Level 05-Applied Mathematics
AMU 3185/AME 5185 – EM Theory & Special Relativity

Duration :- Two Hours

Date :- 18.01.2017

Time :- 1.30 p.m. - 3.30 pm.

Answer Four Questions Only.

- 01. An imaginary open surface S is in the form of a spherical cap r = a, $0 \le \theta \le \alpha$, $0 \le \omega \le 2\pi$, where (r, θ, ω) denote spherical polar coordinates. Define the flux of a vector \underline{E} through S.
 - (a) Use your definition to calculate the electric flux through S if a uniform electric field \underline{E} acts parallel to the axis of symmetry.
 - (b) What is the flux if \underline{E} acts perpendicular to the axis of symmetry?
 - (c) Determine the flux through S if a point charge Q is placed at the centre (r = 0). Deduce the flux for the particular case $\alpha = \pi$.
- 02. Show that, if \underline{A} satisfies the equations

$$div\underline{A} = 0, \quad \nabla^2 \underline{A} = \frac{1}{c^2} \ddot{\underline{A}}$$

and \underline{E} and \underline{H} are defined by the relations

$$\underline{E} = -\frac{1}{c} \dot{\underline{A}}, \qquad \underline{H} = curl \, \underline{A},$$

then \underline{E} and \underline{H} satisfy the Maxwell's equations,

$$curl \underline{H} - \frac{1}{c} \underline{\dot{E}} = 0, \quad div \underline{H} = 0$$

$$curl \underline{E} + \frac{1}{c} \underline{\dot{H}} = 0, \quad div \underline{E} = 0$$

for the electromagnetic field in vacuuo. (Dots denote partial differentiation with respect to time)

Show that $\underline{A} = \underline{i} a \cos \frac{2\pi}{\lambda} (z - ct) + \underline{j} a \sin \frac{2\pi}{\lambda} (z - ct)$, where a and λ are constants, is a possible solution, for the Maxwell's equations given above.

1

- 03. (a) Explain briefly the following terms.
 - (i) Electrical potential
- (ii) Potential difference
- (b) Show that the potential V_r at a point distance r from a point charge Q is given by $V_r = \frac{1}{4\pi\varepsilon} \frac{Q}{r}, \text{ where } \varepsilon \text{permittivity.}$
- (c) A charge 2q is uniformly distributed inside an insulating material in the form of a sphere of radius r.

Show that the potential at a distance $\frac{r}{2}$ from the centre is $\frac{11q}{16\pi\varepsilon_0 r}$.

- 04. Point charges q, -q' and -q' are placed at points O(0,0), A(a,0) and B(-a,0) respectively, where q, q' and a all positive.
 - (i) Given that q > 2q' show that the extreme line of force ending on A is issued from O making an angle α with OA, where $\alpha = 2\sin^{-1}\sqrt{\frac{q'}{q}}$.
 - (ii) Given that q < 2q' show that the extreme line of force ending on A is issued from O making an angle β with OA produced, where $\beta = 2\cos^{-1}\sqrt{\frac{q}{2q'}}$.
- 05.(a) Derive an expression for the magnetic field at any point on the line passing through the centre and perpendicular to the plane of a circular loop which carries a current *I*.
 - (b) Derive an expression for the magnetic field at a point on the axis of a solenoid of radius R and N turns/metre, which carries a current I.
- 06. Derive the Lorezntz transformation equations.

Verify that the above equations can be expressed in the form

$$x' = x \cosh \alpha - ct \sinh \alpha$$

$$y' = y$$

$$z' = z$$

 $ct' = ct \cosh \alpha - x \sinh \alpha$ where $\tanh \alpha = v/c$.

Deduce that

$$x'-ct' = (x-ct)e^{\alpha}$$
,
and $x'+ct' = (x+ct)e^{\alpha}$.