THE OPEN UNIVERSITY OF SRI LANKA B. Sc DEGREE PROGRAMME 2017/2018 CMU2122/CME4122 – INORGANIC CHEMISTRY- LEVEL 4 ASSIGNMENT TEST-II

MCQ ANSWER SHEET: Mark a cross (X) over the most suitable answer.

Reg.	No [•			٦		•									Marks	
reg.	NO. L					F O	r e	xamı	ners	∵Use 				Tota)	
		Correc	t Ans	wers							,		L	····		<u> </u>	
		Wrong Unansw															
í		Total		,	2	25											
01.	1 2	3 4	5	09.	1	2	3	4	5	17.	1	2	3	4	5		
02.	1 2	3 4	5	10.	1	2	3	4	5	18.	1	2	3	4	5	٤	
è	<u></u>		_ ;		L			<u> </u>			<u>L,,</u> ,			•			
03.	1 2	3 4	5	11.	1	2	3	4	5	19.	1	2	3	4	5		
04.	1	2 3	4 5	1:	2.	1	2	3	4	5 2	20.		2		•		
04.				<u>, </u>				3		3		1		3	4	5	
05.	1 2	3 4	5	13.	1	2	3	4	5	21.	1	2	3	4	5		
06.	1 2	3 4	5	14.	1	2	3	4	5	22.	1	2	3	4	5		
		T						<u> </u>	T3		<u> </u>	ı	· 		 1		
07.	1 2	3 4	5	15.	1	2	3	4	5	23.	1	2	3	4	5		
08.	1 2	3 4	5	16.	1	2	3	4	5	24.	1	2	3	4	5		
								·		г		· · · · · · · · · · · · · · · · · · ·		·	·		
*** ***										25.	1	2	3.	4	5		

Registration Num	ber:				
Name:			. المراجع بشرقه المراجع بين المراجع ال		
Address			1-141 Pro referencia la di 1000 para para 1000 m		
	·	20 No Sia kat kili kili ker kir kat an an an an an an			

THE OPEN UNIVERSITY OF SRI LANKA B.Sc/B.Ed DEGREE PROGRAMME – 2017/2018 Level 4 – CYU4300

INORGANIC CHEMISTRY ASSIGNMENT TEST II (NBT)

17th July 2018

4.15 p.m to 5.15 p.m

Avogadro constant, L = $6.023 \times 10^{23} \text{ mol}^{-1}$

Planck's constant, $h = 6.63 \times 10^{-34} J_s$

Velocity of light, $c = 3 \times 10^8 \text{ m s}^{-1}$

Mass of an electron = 0.0005 a.m.u

Mass of a proton = 1.0073 a.m.u.

Mass of a neutron = 1.0089 a.m.u.

1 a.m.u. = $1.661 \times 10^{-27} \text{kg}$

1 MeV = $1.6021 \times 10^{-13} \text{ J}$

Select the most correct answer to each question given below and mark a cross X over the answer in the relevant **BOX** on the **given answer sheet**. Any answer with more than one X will not be counted

Mobile phones and any other electronic equipment are strictly prohibited; leave them outside.

Write your registration number and address in the space provided for this purpose

1. Consider a part of the decay series given below.

$$^{234}_{91}Pa \xrightarrow{-\beta^{-}} Y \xrightarrow{-y} ^{230}Th \rightarrow \rightarrow \rightarrow ^{210}_{84}Po \xrightarrow{z} ^{206}_{82}Pb$$

Which of the following statements are true?

- (i) It is (4n+2) decay series
- (ii) Y is $^{234}_{90}Th$
- (iii) y is β^-
- (iv) z is α

- (1) (i) and (ii) only
- (2) (ii) and (iii) only
- (3) (iii) and (iv) only

- (4) (i) and (iv) only
- (5) (i), (ii) and (iii) only
- 2. How does $^{232}_{90}Th$ decay to $^{228}_{88}Ra$?
 - (1) By positron emission (2) By electron capture
- (3) By electron emission
- (4) By neutron emission (5) By α -decay
- 3. The half-life ($t_{1/2}$) of carbon-11 is 20.4 min. What percentage of the original 1.0 μg sample of carbon-11 is left after a 1 hour 21.6 min period?
 - (1) 37.5
- (2)25
- (3) 17.5
- (4) 12.5
- (5) 6.25

4. The activity of 1	ing of pure rag	$num-220 (t_{1/2}=$	1000 y) in Bec	querel (Bq) is
$(1) 3.66 \times 10^7$	(2) 2.26x10 ⁴	4 (3) 3.66x10 ⁶	(4) 1.83x10	4 (5) 1.13×10^{4}
5. Which of the following $(1)_{2}^{4}He$	lowing nuclides (2) ${}_{6}^{12}C$	will be expected (3) $^{16}_{8}O$	ed to be unstab	tle and radioactive? ${}_{9}^{8}F \qquad (5)_{10}^{20}Ne$
6. What is/are the i				ure (iv) γ emission *
The answer is (1) (i) and (ii) (4) (i) and (i) only v) only	(2) (ii) and ((5) (i), (ii) and	iii) only (3 ad (iii) only	3) (iii) and (iv) only
7. What will be the	product formed	when $^{40}_{19}K$ und	dergoes electro	n capture?
$(1)_{20}^{40}Ca$	$(2)_{19}^{41}K$	$(3)_{19}^{39}K$	$(4)_{18}^{40} Ar$	$(5)_{18}^{41}Ar$
8. What is the mode(1) electron emis(4) α decay	sion (2) p	ositron emissio	_	electron capture
9. Identify x in the x	nuclear reaction	given by the n	otation, ${}^{14}_{7}N(x,$	$(p)_{6}^{14}C$:
(1) α	(2) <i>n</i>	(3) β^{-}	(4) β ⁺	(5) γ
10. ${}^{235}_{92}U + {}^{1}_{0}n$	$\rightarrow \left[\begin{smallmatrix} 236\\92 \end{smallmatrix} U^*\right] \rightarrow$	$^{144}_{56}Ba + ^{90}_{36}Kr$	$+ 2_0^1 n$	
Which of the fo (i) It is a fission (iv) It is a neutr	ii) It is			given above? a compound nucleus
(1) (i) and (ii) (4) (i) and (i	•	(2) (ii) and ((5) (i), (ii) a		iii) and (iv) only
11. At 12.00 noon,	in a nuclear pha	rmacy, the acti	vity of 111 <i>In</i> w	as found to be 10
mCi. Calculate the				
$(t_{1/2})$ of ¹¹¹ In is 2.83	days.			
(1) 8.469	(2) 6.984	(3) 9.846	(4) 8.964	(5) 4.986
12. The nuclear read		•		
(1) nuclear fissi	on	(2) nuclear f	usion (3)	α emission
(4) proton captu	ire ·	(5) deuterium	decay	

. :	14 labe mixture of 150	isotope dilution ana elled glycine (specif e. After equilibration counts min ⁻¹ mg ⁻¹ . nount of glycine (in	ic activity= 1 on, 1 mg of pu	1800 counts are glycine i	min ⁻¹ mg	⁻¹) was added t	othe
	(1) 90	(2) 75	(3) 60	(4	4) 55	(5) 50	
14.	(i) an po (ii) an (iii) a	entical configuration electronic configurations in space. In equivalent configurations configurations.	ration where uration of the	similar elec	-		
•	(1) (1)	orrect statement/s, o i) only.), and (iii) only	(2) (iii) onl	у.		and (ii) only.	
15.	(i) or co (ii) th (iii) th	nmetry operation alvance electronic configuration of the same nuclei of a molecter nuclei of a molecter onfiguration.	uration of a r same moleculule from one	le. configuration	on to an id	lentical configu	ration.
	(1) (i)	orrect statement/s, only. only. and (iii) only	(2) (ii) only	r .	ove, is/are (3) (iii) only.	
16.	(i) Ev (ii) It (iii) So	der the following sta very molecule posse is a geometric entit ome symmetry elem- em.	esses at least y.	one symme	try elemer	nt.	
	(1) (1)	orrect statement/s, o only, o, and (iii) only	ut of (i), (ii) (2) (ii) only (5) (ii) and	•	ve, is/are (3) (iii) only.	
17.	(i) The part of th	der the following sta he maximum numbe articular symmetry p he maximum numbe	er of distinct plane of a mo	reflection sy lecule can b	mmetry o	perations abou	

	The correct statement/s, out of (i), (ii) and (iii) above, is/are (1) (i) only. (2) (ii) only. (3) (iii) only. (4) (i), and (iii) only (5) (ii) and (iii) only
18	 Consider the following statements about rotational axes of a molecule. (i) The rotational axis of a molecule that has the highest order is called the principal axis of that molecule. (ii) The order of the principal axis of an ammonia molecule is three. (iii) Any molecule has at least one rotational axis of order greater than one.
	The correct statement/s, out of (i), (ii) and (iii) above, is/are (1) (i) only. (2) (ii) only. (3) (i) and (ii) only. (4) (i), and (iii) only (5) All, (i), (ii) and (iii).
19.	Consider the following statements about the symmetry elements of a benzene molecule. (i) Principal axis is C_6 . (ii) It has $\underline{six} \ C_2$ axes.
	(iii) The plane of the molecule is a σ_h .
	The correct statement/s, out of (i), (ii) and (iii) above, is/are (1) (i) only. (2) (ii) only. (3) (i) and (ii) only. (4) (i), and (iii) only (5) All, (i), (ii) and (iii).
20.	What is the <u>correct</u> relationship regarding a reflection operation about the horizontal plane in $PtCl_4^{2-}$ ion?
	(1) $\sigma = E$ (2) $\sigma = \sigma^2$ (3) $\sigma^2 = \sigma^3$ (4) $\sigma^2 = E$ (5) $\sigma^3 = E$
21.	A student prepared an exotic linear molecule with molecular formula A_2B_3 . Its structure is $A-B=B=B-A$. The A-B bond length is x and the B=B bond length is y. The student observed that $x \neq y$. Consider the following statements about the symmetry elements of this molecule. (i) Principal axis is C_{∞} . (ii) The molecule has only two C_2 axes. (iii) The molecule has an inversion centre. The correct statement/s, out of (i), (ii) and (iii) above, is/are (1) (i) only. (2) (ii) only. (3) (i) and (ii) only. (4) (i), and (iii) only (5) All, (i), (ii) and (iii).

22. Pick the outcome of the symmetry operation i³ on the following nuclear configuration of trans-CHCl=CHCl.

Use the following four configurations of a tetrahedral molecule AB_4 in answering questions 23, 24 and 25.

As usual, the AB bonds indicated by the black triangles are above the plane of the paper. The other two bonds are below the paper. In all configurations the axis that is on the BAB plane which is above the paper and bisects that BAB angle, is perpendicular to the paper. This axis is denoted by α .

- 23. Consider the following statements.
 - (i) Configuration (a) can be taken to configuration (b) by rotating the molecule by 45° about the axis α .
 - (ii) Configuration (a) can be taken to configuration (d) using the identity operation.
 - (iii) The operation that takes configuration (b) to configuration (c) is a symmetry operation of the molecule.
 - (iv) Rotation of the molecule by 180° about the axis α is a symmetry operation of AB_4 .

The correct statements, out of (i), (ii), (iii) and (iv) above, are

- (1) Only (i) and (ii). (2) Only (i), (ii) and (iii). (3) Only (ii) and (iii).
- (4) Only (i) (iii) and (iv) (5) All (i), (ii), (iii) and (iv)

24. Consider the following statements.

- (i) The axis α is a C_4 axis of the molecule.
- (ii) The axis α is a S_4 axis of the molecule.
- (iii) One can take configuration (a) to configuration (d) using a composite operation of a reflection through a plane and a rotation about the axis $\,\alpha$.
- (iv) One can take configuration (b) to configuration (c) using a composite operation of a reflection through a plane and a rotation about an axis.

The correct statements, out of (i), (ii), (iii) and (iv) above, are

- (1) Only (i) and (ii).
- (2) Only (i), (ii) and (iii).
- (3) Only (ii) and (iv).
- (4) Only (i) (iii) and (iv) (5) All (i), (ii), (iii) and (iv)
- 25. In standard notation, which of the following represents the total set of distinct rotational symmetry operations that can be performed about the axis α .
 - $(1) \left\{ E, C_4, C_4^3, C_4^5 \right\} \qquad (2) \left\{ E, C_4^5, C_4^8, C_4^{13} \right\} \qquad (3) \left\{ E, C_4, C_4^6, C_4^{11} \right\}$

- (4) $\{E, C_2^3\}$
- (5) $\left\{ E, C_2^3, C_2^5 \right\}$

			B.S CYU 43	e Open Univer Sc. Degree Pro 00 – Inorganio nment Test –	ogram 20 c Chemis	17/2018 stry – Level 4	·			
(01)	4	(02)	5	(03)	5	(04)	1		(05)	4
(06)	2	(07)	4	(08)	1	(09)	2		(10)	5
(11)	3	(12)	2	(13)	4	(14)	5		(15)	3
(16)	2	(17)	5	(18)	3	(19)	5		(20)	1
(21)	4	(22)	4	(23)	4	(24)	3	· ·	(25)	4