

THE OPEN UNIVERSITY OF SRI LANKA B. Sc. DEGREE PROGRAMME / STAND ALONE COURSE 2016 / 2017 LEVEL 5 - FINAL EXAMINATION CMU3120 / CME5120 - ORGANIC CHEMISTRY

DURATION: 02 HOURS

Friday, 11th August 2017

1.30 - 3.30 p.m.

Answer ALL FOUR (04) questions.

- 1. Answer any **FOUR (04)** parts from (a) (e).
 - (a) Explain why pyridine is less basic than piperidine.
 - (b) Arrange pyrrole, pyridine and benzene in the order of their increasing reactivity towards electrophilic reagents. Explain your answer in terms of the structures of the corresponding intermediates.
 - (c) Explain why electrophilic substitution in indole occurs mainly at C-3 position rather than at C-2 position.
 - (d) Give an example for a nucleophilic substitution reaction in six-membered aromatic heterocyclic compound. Draw the resonance structures of the intermediate ion and indicate the most stable contributing structure,

(e) Give the structures of major products A, B and C of the following reactions.

(i)
$$\frac{\text{HNO}_3/\text{Ac}_2\text{O}}{\text{N}}$$

(ii)
$$\frac{1. \text{ NaNH}_2}{2. \text{ H}_2\text{O}} \rightarrow \text{E}$$

(iii)
$$Ac_2O/SnCl_4$$
 c

 $(25 \times 4 = 100 \text{ Marks})$

2. (a) Give the structures of the products $\mathbf{D} - \mathbf{G}$ of the following reactions.

(i)
$$\frac{\text{MgBr}}{2. \text{ H}^{+}/\text{H}_{2}\text{O}}$$
 D

(ii)
$$\frac{1. CO_2}{2. H^+/H_2O}$$
 E

(iii)
$$CH_2I_2 \rightarrow F$$

(iv)
$$\frac{1. \text{ Me}_2\text{CuLi}}{2. \text{ H}^+} \qquad \mathbf{G}$$

(40 Marks)

(b) Reaction between di-*iso* propyl ketone and *tert*-butylmagnesium bromide followed by acidification does not yield the desired alcohol. Instead, two side reactions take place. Give the mechanism and the product(s) of **one** of the side reactions.

(20 Marks)

- (c) Answer any **ONE** (01) of the following parts.
 - (i) Giving necessary reagents and conditions and using Reformatzky reaction as one of the carbon-carbon bond formation reaction show how you would carry out the following synthesis of Vitamin A from β -ionone.

(ii) Give the structures of the products **H** and **I** and the mechanism of the following reaction.

Me
$$+$$
 Cl CO_2Et NaOEt $+$ $1.OH^ 2.H^+$

(40 Marks)

3. (a) Give the structures of the compounds $\mathbf{J} - \mathbf{O}$ of the following reaction schemes.

(ii)
$$\frac{\text{LDA/Mel}}{\text{THF}}$$
 J

(iii) $\frac{\text{CHCl}_3/\text{alc.KOH}}{70 \, ^{\circ}\text{C}}$ K $\frac{\text{Ac}_2\text{O/AcO} \, \overset{-}{\text{K}}}{\text{K}}$ L $\frac{\text{H}^+}{\text{CO}}$ L

(iii) EtO OEt NaOEt N
$$\frac{1. \text{ OH}^{-}/\text{H}_2\text{O}}{2. \text{ H}^{+}}$$
 O 3. heat

(30 Marks)

(b) Answer either PART I or PART II.

PART I

Benzaldehyde when treated with NaCN in ethanol gives >80% benzoin.

- (i) Give the mechanism of the formation of benzoin from the above reaction.
- (ii) Give reasons as to why benzoin condensation takes place in aromatic aldehydes in contrast to aliphatic aldehydes.

PART II

Acetoacetic ester when treated with 1,3-dibromobutane in the presence of NaOEt, the following four membered alicyclic compound **Z** is not formed.

- (i) Give the product of this reaction and the mechanism of its formation.
- (ii) Explain why the expected four membered alicyclic compound **Z** is not formed.

(30 Marks)

- (c) (i) Briefly describe Mannich reaction giving an appropriate example and its mechanism.
 - (ii) Show how tropinone is synthesized using Robinson's synthesis which illustrates the use of Mannich reaction in organic synthesis.

(40 Marks)

4. (a) Give the products and intermediates (P - Y) in the following reaction schemes.

(b) Giving mechanisms identify the major products of any **TWO** (02) of the following reactions.

i.
$$NH_3$$

ii. $P(OEt)_3$

iii. NO_2
 $NANO_2/H^+$
 NO_2
 $NaNO_2/H^+$
 NO_2
 NO_2

- (c) Indicate the synthetic route leading to any ONE (01) of the following.
 - (i) (CH₃)₃C-NH₂ employing Ritter reaction using (CH₃)₃C-OH as one of the starting materials.
 - (ii) CH₃CH(NH₂)COOH employing Strecker synthesis using CH₃CHO as one of the starting materials.

(40 Marks)