

The Open University of Sri Lanka
B.Sc. / B.Ed. Degree Programme – Level 05
Final Examination -2016/2017
Applied Mathematics
APU3240/APE5240 — Numerical Methods

064

Duration: Three Hours

Date: 23. 07. 2017 Time: 01.00 p.m. – 04.00 p.m.

Answer Five Questions Only.

- 1. (a) Derive method of False Position for solving the equation f(x) = 0.
 - (b) Find the root of the equation $xe^x 2 = 0$, lying in the interval [1, 2], correct upto two decimal places using method of False Position.
 - (c) Find the maximum number of iterations required to find the root of the equation $x^3 + x^2 1 = 0$, lying in the interval [0, 1], correct upto three decimal places.
- 2. (a) Prove that

(i)
$$E = \Delta + 1$$
, (ii) $E = (1 - \nabla)^{-1}$, (iii) $\delta = E^{1/2} - E^{-1/2}$, (iv) $\Delta = \nabla E = \delta E^{1/2}$ (v) $\mu = \sqrt{1 + \frac{\delta^2}{4}}$

where Δ , ∇ , δ , E and μ are the forward difference, the backward difference, the central difference, the shift and the averaging operators respectively.

- (b) Derive Gregory- Newton backward interpolation formula.
- (c) The following data are taken from the steam table.

Temperature °C	140	150	160	170	180
Pressure N/cm ²	3.685	4.854	6.302	8.076	10.225

Find the pressure at $t = 175^{\circ}C$ using Gregory-Newton backward interpolation formula.

- 3. (a) (i)Derive Newton's general interpolation formula with divided differences.
 - (ii) Find a polynomial f(x), that passes through the points (1, 1), (2, 5), (7, 5) and (8, 4).
 - (b) (i) Derive Lagrange's interpolation formula.
 - (ii) Applying Lagrange's formula, obtain a polynomial f(x) that passes through the points (5, 12), (6, 13), (9, 14) and (11, 16).
- 4. (a) Derive the Simpson's One -Third Rule.
 - (b) If the interval [a, b] is divided into 2n sub intervals and corresponding ordinates are denoted by y_0, y_2, \dots, y_{2n} then show that the error in Simpson's One –Third rule is given by $|E| < \frac{(b-a)h^4}{180}M$, where M is the numerically greater value of $y_0^{iv}, y_2^{iv}, \dots, y_{2n-2}^{iv}$.
 - (c) Applying Simpson's One third rule for following data,

х	0	1/6	1/3	1/2	2/3	5/6	1
$\frac{1}{1+x^2}$	1	0.9730	0.9000	0.8000	0.6923	0.5902	0.5000

evaluate the integral $\int_{0}^{1} \frac{1}{1+x^{2}} dx$. Hence find an approximate value for π .

5. (a) Applying Taylor series method of fourth order for the differential equation

$$\frac{dy}{dx} = 1 - 2xy$$
 subject to the initial condition $y(0) = 0$, evaluate $y(0.2)$ and $y(0.4)$.

(b) Applying Taylor series method of fourth order for the differential equation $y'' - xy'^2 + y^2 = 0$ subject to the initial conditions y(0) = 1 and y'(0) = 0, evaluate y(0.1), y(0.2).

- 6. (a) (i) Derive formula for Picard's method to solve $\frac{dy}{dx} = f(x, y)$ subject to the initial condition $y(x_0) = y_0$.
 - (ii) Using Picard's method, find the first-three successive approximations to solve $\frac{dy}{dx} = 2x y^2$ with the initial condition y(0) = 0.
 - (b) Applying Modified Euler method for $\frac{dy}{dx} = x\sqrt{1+y^2}$ subject to the initial condition y(1) = 0, evaluate y(1.4) and y(1.8).
- 7. (a) State fourth order Runge-Kutta algorithm to solve $\frac{dy}{dx} = f(x, y)$ subject to the initial condition $y(x_0) = y_0$.
 - (b) Solve $\frac{dy}{dx} = y x^2$ with the initial condition y(0) = 1 using Runge-Kutta method of fourth order. Evaluate the value of y, when x = 0.2 and x = 0.4.
 - (c) Solve the system of differential equations $\frac{dy}{dx} = -xz$ and $\frac{dz}{dx} = y^2$ with the initial conditions y(0) = 1, z(0) = 1 using Runge-Kutta method of fourth order and evaluate y(0.2) and z(0.2).
- 8. (a) State Milne's Predictor Corrector Method to solve $\frac{dy}{dx} = f(x, y)$ subject to the initial condition $y(x_0) = y_0$.
 - (b) Applying Taylor series method for $\frac{dy}{dx} = 2e^x y$ with the initial condition y(0) = 2 show that y(0.1) = 2.010, y(0.2) = 2.040 and y(0.3) = 2.090. Hence find y(0.4) correct upto three decimal places by using Milne's Predictor Corrector Method.