The Open University of Sri Lanka
Bachelor of Science Degree Programme – Level 05
Department of Computer Science
Final Examination 2016/2017
CPU3140 – Mathematics for Computing

Duration: Two hours only

Date: 22.07.2017 Time: 9.30 am – 11.30 am

Answer FOUR Questions only.

- (01) (i) Describe the principle of Mathematical Induction for a statement P(n) where n ∈ N
 - (ii) Prove the following equation using the above principal for all $n \ge 1$ $1+4+7+...+(3n-2) = \underline{n(3n-1)}$
 - (iii) Use Mathematical Induction to verify that for all $n \in \mathbb{N}$, that $(6^n 1)$ is divisible by 5
- (02) (i) Define the following terms regarding matrices
 - (a) A square matrix
 - (b) Identity matrix of any order
 - (c) Symmetric matrix
 - (d) Singular matrix
 - (ii) Let $A = \begin{bmatrix} 6 & -2 \\ -4 & 1 \end{bmatrix}$ and I be 2×2 identity matrix.
 - (a) Prove that $A^2 = 7A + 2I$
 - (b) Hence, show that $A^{-1} = \frac{1}{2} (A-71)$
 - (iii) Let B = $\begin{bmatrix} 5 & 2 & 3 \\ 4 & 7 & 1 \\ 8 & 5 & 9 \end{bmatrix}$

Is "B" a symmetric matrix? Justify your answer.

(iv) Let $B_1 = \begin{bmatrix} 3 & 2 \\ 1 & 3 \end{bmatrix}$ Find the determinant of B_1 and hence Find $\det(B_2)$. Where $B_2 = \begin{bmatrix} 3 & 2 & 0 \\ 1 & 3 & 2 \\ 0 & 1 & 3 \end{bmatrix}$

- (03) (a) Give the definition of a Recurrence Relation.
 - (b) Clarify the following recurrence relations.
 - (i) $a_n = a_{n-1} + 2a_{n-2} + 3a_{n-3}$
 - (ii) $P_n = (1.12) P_{n-1}$
 - (iii) $a_n = a_{n-1} + a_{n-2}^2$
 - (iv) $f_n = f_{n-1} + f_{n-2} f_{n-3} + 9$
 - (v) $B_n = n^2 B_{n-1}$
 - (c) Solve the recurrence relation given below.

$$a_n = a_{n-1} + 2a_{n-2}$$
 with $a_0 = 2$ and $a_1 = 7$

- (04) (i) Define the following terms regarding sets.
 - (a) Sets and Subsets
 - (b) Power set
 - (c) Null set
 - (ii) List the elements of the following sets where $P = \{1, 2, 3, ...\}$
 - (a) $A = \{ x : x \in P, 3 < x < 12 \}$
 - (b) $B = \{x : x \in P, x \text{ is even and } x < 15 \}$
 - (c) $C = \{ x : x \in P, 4+x=3 \}$
 - (d) $D = \{ x : x \in P, x \text{ is a multiple of 5 } \}$
 - (iii) Using the laws of Algebra of sets, prove the following identities.
 - (a) $(A \cap B) \cup (A \cap B^C) = A$
 - (b) $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$
 - (iv) A small college of 140 students requires its students to take at least one mathematics course and at least one science course.

Use a Venn diagram or any other method in set theory to find the number of students who had completed:

- (a) Exactly one of the two requirements.
- (b) At least one of the requirements.
- (c) Neither requirement.
- (05) (i) Give the definition of a function and write a brief statement about the terms:
 - (a) Domain
 - (b) Co-domain
 - (c) The range of a function

- (ii) Find the domain and the range of the following functions.
 - (a) f(x) = 2-x, $x \in \mathbb{N}$
 - (b) f(x) = x, $x \in \mathbb{R}$
- (iii) Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as follows:

$$f(x) = \begin{cases} 3x-1 & \text{if } x>3\\ x^2-2 & \text{if } -2 \le x < 3\\ 2x+3 & \text{if } x < -2 \end{cases}$$

Find the values of

- (a) f(2), (b) f(4) and (c) f(-3)
- (iv) The two functions f(x) and g(x) are

$$f(x) = x^2 + 3x + 1$$
 and

$$g(x) = 2x - 3$$
 and $x \in \mathbb{R}$

Find the composition functions of (a) fog(x) and (b) gof(x)

- (vi) What can you say about the two composition functions in part (iv) above. Justify your answer.
- (06) (i) If p and q are two propositions, give the truth tables for Conjunction, Disjunction, Conditional implication and Bi-conditional.
 - (ii) Using part (i) construct the truth tables and verify whether each of the following is a tautology, a contradiction or a contingency. Justify your answers.
 - (a) $(p \wedge q) \wedge \sim (p \vee q)$
 - (b) $(p \lor \sim q) \rightarrow (p \land q)$
 - (c) $(p \rightarrow q) \leftrightarrow (p \land \sim q)$

All Rights Reserved