

INDEX NO:	_

THE OPEN UNIVRVERSITY OF SRI LANKA B. Sc. DEGREE PROGRAMME / STAND ALONE COURSE 2007 / 2008 LEVEL 4 - FINAL EXAMINATION

CHU 2221 / CHE 4221 - ORGANIC CHEMISTRY - PAPER I

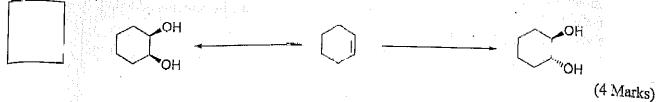
DURATION: 21/2 HOURS

Saturday 05 th July 2008	10.00 a.m12.30 p.m.
Attempt as many questions as possible.	
Maximum marks allocated to this paper are 120. How marks or above will be awarded 100% and those scorthey make.	wever a candidate who scores 100 ing less will be awarded the score
Write your answers in the space provided at each question	n.
1. Answer both parts.	
(a) Consider the encircled bonds in following mol is polar or non polar.	lecules. State whether each of them
(i) H (ii) Cl Cl (iii) H C-O-H Cl Cl Cl H- H Cl Cl Cl	H H (iv) F Br C-C∓C-C-H F-C-C-Br H H F Br
	(2 Marks)
(b) State, whether each of the above compounds l	have a dipole moment or not (Yes /No
i iii	
i iii iv	(2 Marks)
2. Give the structure of the product of the following rea	action.
Me CHCl ₃ NaOEt	
	(2 Marks)

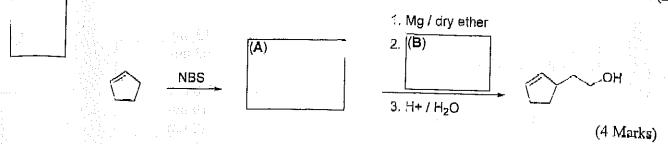
3. Briefly giving reasons state whether acetone or propanol has a higher boiling point.

(4 Marks)

4. Give a chemical test to distinguish between the compounds in each of the following pairs of examples.

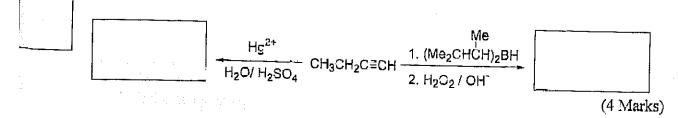

(a)

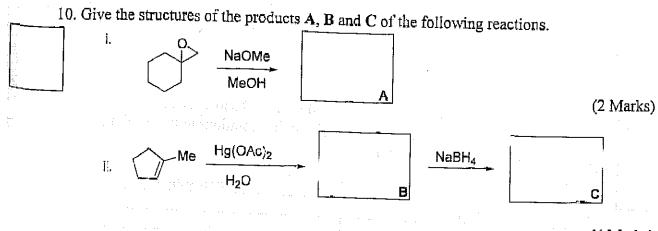
(4 Marks)


Give the missing reagents and products of the following reaction scheme.

(4 Marks

6. Give the reagents for the following reactions.


7. Complete the following reaction scheme giving structures of the product (A) and reactant (B).



8. Give the major products of the following two reactions.

(4 Marks)

9. Give the structures of the products of the following reactions

(4 Marks)

11. Calculate the expected λ_{max} of an ethanolic solution of compound A. Some data that will be useful in your calculation are given below. State clearly the increments added to the base value in your calculation.

Α

A		
Base value for a six membered ring enone	=	215 nm
Base value for a five membered ring enone	=	202 nm
Increments for		
Double extending conjugation	=	30 nm
Alkyl group or ring residue at α	=	10 nm
β	=	12 nm
y and higher	=	18 nm
Exocyclic double bond	=	5 nm
Homo annular diene	=	39 nm
Solvent correction for ethanol	=	00 nm
Solvent correction for water	=	8 nm
Polar groupings OH at α	=	35 nm
Potar groupings Orr at a	=	30 nm
þ		
OCOCH ₃ at α or β	=	6 nm

(5 marks)

12. **B** is an aliphatic compound and contains C and H only. **B** shows peaks at 3269 cm⁻¹ and 2110 cm⁻¹ in the IR spectrum. Assign the peaks to the vibrations to the bonding you would expect to be present in the compound.

IR peaks	Bonding
3269 cm ⁻¹	
2110 cm ⁻¹	(A ma

(4 marks)

13. The approximate δ values of the resonance signals (peaks) of the compound C are 1.1, 1.8 and 4.7 ppm. Assign the signals to the hydrogen atoms in C by labeling them as A, B and C. Draw the ¹H NMR spectrum of the compound showing the splitting patterns of the peaks in the box provided.

$$\begin{array}{c} \text{H}_3\text{C} \\ \text{H} \xrightarrow{\hspace{1cm}} \text{CH}_2\text{NO}_2 \\ \text{H}_3\text{C} \end{array}$$

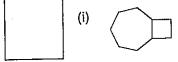
 \mathbf{C}

14. Mass spectrum of a compound containing C, H, X (where X is a halogen) only. It shows peaks at m/z 108 and 110 in the ratio 1:1. Identify the element X present in the compound and state the number of atoms of X you would expect the compound to contain.

(4 Marks)

15. When acetylene is placed in an external magnetic field (Ho).

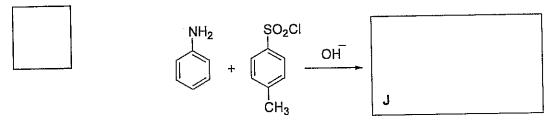
- (a) Draw the lines of force as the result of the secondary magnetic field (H_1) generated.
- (b) Indicate by an equation the magnetic field felt by the protons in acetylene.


				(5 Marks)
17. Give the structure would employ to	es of the dienophile wi obtain the following o	ith its stereochemistry a compound.	and the diene which	en you
CO₂Me H CO₂Me	diene	dienophile with	its stereochemistry	
				(6 Marks)
18. Give the structur	es of the products of t	he following reactions.		,
	CrO ₃ / H ⁺ 0 °C	$-CH_2OH \frac{PCC / 25^{\circ}}{CH_2Cl_2}$	2	
				(4 Marks)
19. Give the structu	res of the products of	the following reactions	•	
	O OCH3	1. NaBH ₄ 2. H ₂ O ⁺		
				(3 Marks)
20. Arrange the following	lowing acids in the ord	der of increasing acidit		
		CH₃CO₂H	CICH ₂ CO ₂ H	
BrCH₂CO₂H	Cl₂CHCO₂H	C	D	

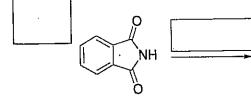
- 21. Arrange the following compounds in order of increasing basicity.
- NH₃ CH₃NH₂
 (I) (II)
- (CH₃)₂NH (III)
- C₆H₅NH₂

.....<.....

(2 marks)


22. Give the IUPAC name of the compounds given below.

(ii) COOH


(6 marks)

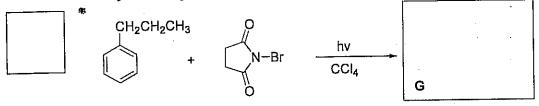
23. Draw the structure of the product J you expect from the reaction given below.

(3 Marks)

24. Complete the reaction given below by drawing the structures of the reagents in the boxes provided.

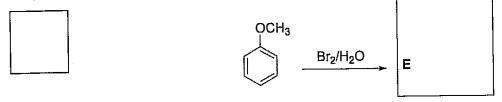
N-CH₂CH₃

(6 marks)

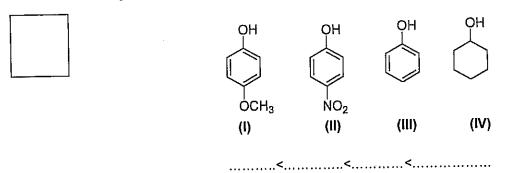

25. Complete the reaction given below by identifying the product K.

The Amely (

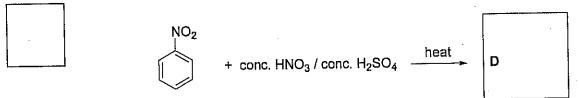
$$CH_3NH_2 + NaNO_2/HCI \xrightarrow{0-5 \, ^{\circ}C} K$$


(3 marks)

26. Identify the compound G


(4 marks)

27. Identify the product ${\bf E}$ in the reaction given below.


(4 marks)

28. Arrange the following compounds in order of increasing pK_n values.

(3 marks)

29. Identify the compound \mathbf{D} in the reaction given below

Identify the electrophile.

(6 marks)

30. Predict the product \mathbf{H} in the reaction given below.

(3 Marks)

Copyrights reserved

THE OPEN UNIVERSITY OF SRI LANKA

B. Sc DEGREE PROGRAMME / STAND ALONE COURSE 2007/2008

LEVEL 4 - FINAL EXAMINATION

CHU 2221 / CHE 4221 - ORGANIC CHEMISTRY - PAPER II

DURATION: 2 1/2 HOURS

Saturday	05 th	July 2008	
Salmuay,	vJ	THIS TOOL	

1.30 p.m.- 4.00 p.m.

Answer any FOUR (04) questions. Only the first four answers will be marked.

- 1. (a) An alkene A (C₇H₁₂) underwent ozonolysis in the presence of Zn/H₂O to give B (C₇H₁₂O₂). B gave an orange precipitate with Brady's reagent but did not give silver mirror with Tollens reagent. B when reacted with l₂/NaOH followed by acidification gave C (C₅H₈O₄) and iodoform. C showed a triplet for 4H, a quintet (split into 5 lines) for 2H and broad singlet for 2H in its ¹H NMR spectrum. C gave the hydrocarbon D when heated with sodalime.
 - i. Deduce the structures of A, B, C and D.

Compound **B** when heated with NaOH gave **E** $(C_7H_{10}O)$.

ii. Giving the mechanism, predict the structure of E.

(80 Marks)

(b) Give the structures of products F, G and H the following reaction scheme.

(20 Marks)

2. (a) Giving necessary reagents and conditions show how you would perform any two (02) of the following conversions.

!.
$$CH_3$$
-C≡ CH - CH_3 -CH= CH - CH_3

ii. CH_2 OH - CH_2 CH= CH_2 CH CH_3

(30 Marks)

- (b) Rate of hydrolysis of *tert*-butyl chloride [Me₃CCl] in aqueous medium (H₂O) depends only on the concentration of alkyl halide.
- (i) Give the mechanism of the reaction.
 - (ii) Draw the completely labeled energy diagram for the reaction.

(30 Marks)

(c) Draw the two chair conformations of the following compound P and label them as P1 and P2. Which conformation is more stable?

P was treated with alcoholic KOH. Giving explanations, answer the following.

- (i) Which conformation is capable of reacting with alcoholic KOH?
- (ii) Give the mechanism of the above reaction.
- (iii) What is/are the product(s) of this reaction?

(40 Marks)

3. (a) 'In the IR spectrum of CH₃COCH₃ the absorption due to >C=O stretching is seen at 1715 cm⁻¹ while that in acetophenone (C₆H₅COCH₃) is at 1683 cm⁻¹. Explain the above statement.

(25 Marks)

(b) Explain why benzene shows a resonance signal at $\delta = 7.27$ ppm in the ¹H NMR while ethylene shows the signal at $\delta = 4.6$ ppm.

(25 Marks)

(c) Toluene (C₆H₅CH₃) shows a base peak at m/z 91.

- (ii) Draw the structure of the stable positively charged fragmented ion responsible for this peak
- (iii) Indicate the mechanism for the formation of this fragmented ion.

(25 Marks)

- (d) CH₃CHO shows a UV absorption at 190 nm (log ε = 2.0) and at 290 nm (log ε = 1.0).
 - (i) Indicate the transitions responsible for the above absorptions.
 - (ii) Explain why the two absorptions differ in wave length.

(25 Marks)

4. (a) What do you understand by the term "resonance energy of benzene'?

(15 Marks)

(b) 'Typical reactions of benzene are electrophilic substitution reactions'. Explain the above statement in relation to the structure and relative stability of benzene.

(15 Marks)

- (c) Consider the reaction of acetaldehyde (CH₃CHO) with ethanol (EtOH).
 - (i) Explain why the reaction is extremely slow without the presence of mineral acids while mineral acids catalyze the reaction.
 - (ii) Give the mechanism and the product of the above mechanism.

(30 Marks)

(d) Give the structures of P - U of the following reactions.

i.
$$CH_3$$
 CH_2CH_3 NH_2OH P

ii. CH_3 Br_2/CH_3CO_2H Q

iii. CHO $NAOH$ R

iv. Me CO_2H $SOCI_2$ S Me_2NH T

v. $CONH_2$ P_2O_5 U (40 Marks)

5. (a) Identify the compounds C and D in the reactions given below.

(i)
$$CH=CH_2$$
 CH_2I_2 / ether C Zn/Cu (ii) $BrCH_2CH_2CH_2Br \xrightarrow{Na} D$ (20 Marks)

- (b) (i) Identify the compound E in the reaction given below.
 - (ii) Give the mechanism of the reaction involved.

(c) Explain why K_b value of aniline is 4.2×10^{-10} while that of p-nitroaniline is 0.001×10^{-10} . (25 Marks)

(d) Identify the products **F** and **G** in the reaction given below and indicate the positions of the isotopes (D and ¹⁵N) in the products.

$$CONH_2$$
 $CO^{15}NH_2$ CI_2/KOH $F + G$ (25 Marks)

- . (a) Giving necessary reagents and reaction conditions indicate how you would effect the following conversions.
 - N.B. Conversions may involve more than one step.

(i)
$$NH_2$$
 NH_2 NO_2 $NO_$

- (b) (i) Identify the products A and B in the reactions given below.
 - (ii) Give the mechanism of the reactions involved in the formation of compounds ${\bf A}$ and ${\bf B}$

(ii)
$$OCH_2CH=CH_2$$

heat

A

(iii) $O^{-}Na^{+}$
 $+ CO_2$

high pressure

Copyrights reserved

A

(40 Marks)