

THE OPEN UNIVERSITY OF SRI LANKA B.Sc DEGREE PROGRAMME/STAND ALONE COURSES 2009/10 LEVEL 5 – CONTINUOUS ASSESSMENT TEST 11 (OBT)

CHU3139 – BIO CHEMISTRY 1 DURATION : 1 ½ HOURS

Date: 12 ^h October 2009			Time: 4.00-5.30pm		
Reg.No:	من هذه جمع من منا شاه نجيد لهند منا ساه منا				
		Question		Marks	
	1		*		
	2		·		
	Total	arate			

Instructions to candidates:

This question paper has 4 pages and 2 questions. Answer all questions only in the space provided. Attached sheets will not be graded.

01. Two reactions involving L-amino acids and the value of their respective free energy changes are as follows.

Glutamate + pyruate $\leftrightarrow \alpha$ - ketoglutarate + alanine $\Delta G^n = -0.24$ kcal/mol

Glutamate + oxaloacetate $\leftrightarrow \alpha$ - ketoglutarate + aspartate $\Delta G^0 = -1.15$ kcal/mol

(i) Under standard conditions, is the net formation of alanine and oxaloacetate from aspartate and pyruate thermodynamically favourable or unfavourable? Give reasons?

(20 marks)

(ii) Suppose that at 25°C the molar concentrations of reactants and products are as follows.

[pyruate] = [aspartate] = 10^{-2} M

 $[alanine] = 10^{-4}M$

 $[oxaloacetate] = 10^{-5}M$

Is the spontaneous synthesis of alanine and oxaloacetate possible under these conditions? Why? Clearly show your calculations.

Faraday constant is 96500 Cmol⁻¹ (1J=1CV). Clearly show your calculations.

 $R = 8.314 \text{ Jmol}^{-1} \text{K}^{-1}$, 1 calorie = 4.184J

(30 marks)

02. (a) Compare cyclic and non-cyclic electron flow in the photosynthetic organ	nisms.
(b) i. What are complexes, I, II, III and IV found in mitochondria?	(09 marks)
ii. What are the reactions catalyzed by each complex?	(06 marks)
(c) What are the ways in which glucose provides energy for cells?	(08 marks)
(d) i. What are the two methods of removal of amino groups from amino acid	(08 marks) s?
	(04 marks)

ii. What is the difference between these two methods?

(06 marks)

(e) Explain how cane sugar provides energy on catabolism.

(09 marks)

Reg No:	
Name:	· · · · · · · · · · · · · · · · · · ·
Address	
