

THE OPEN UNIVERSITY OF SRI LANKA B.Sc. Degree Programme / Stand alone course — Level 4 CHU 2125/CHE 4125 — Analytical Chemistry - 2011/2012 Assignment Test II

Duration	and	half	f-hoi	ırs				22	2 nd 5	Septe	mber 201	1- 4	.00 p).m. 1	to 5	.30 p.	.m.		
Index No.															1	No.		Marl	(S
											<u> Lt</u>	Jnan: han							
PART I	(MC			g Answe		_		_											
										·		rota.		wer	5				
												rota.	L						
1.	1	2	3	4	5	:	2.	1	2	3	4	5	3.	1	2	3	4	5]
4.	1	2	3	4	5		5.	1	2	3	4.	5	6.	1	2	3	4	5]
7.	1	2	3	4	5		8.	1	2	3	4	5	9.	1.	2	3	4	5	
10.	1	2	3	4	5	1	1.	1	2	3	4	5	12.	1	2	3	4	5]
13.	1.	2	3	4	5	1	4.	1	2	3	4	5	15.	1	2	3	4	5	
16.	1	2	3	4	5	1	7.	1	2	3	4	5	. 18.	1	2	3	4	5	
19.	1	2	3	4	5	2	0.	1	2	3	4	5	. **						
(2 m	iarks :	x 20:	= 40	mar	ks)								•						
														L	iesti			Mar	ks
														Pa	rt I (MC	J) l		

Part II

Total

Q1 Q2

PART I

1.	. According to Phase point of water is	rule: $P + F = C + 2$, the r	umber of degree	s of freedom (F)	at the triple
	(1) $F=1-1+2$	(2) F= 2-3+2	(3) F= 1-2+2	(4) 2-1+2	(5) F= 1-3+2
2.	. What is the number equilibrium with liq	of degrees of freedom fouid methanol?	r a system in whi	ch methanol vap	pour is in
	(1) 0	(2) 1	(3) 3	(4) 4	(5) 5
3.	the liquid phase is 0. liquid phase is 0.50.	erature, the mole fraction 50. The mole fraction of The relative volatility, 6	'Y' in the vapou	r phase is 0.75,	while that in the
	(1) 1.5	(2) 0.33	(3) 3.0	(4) 0.67	(5) 0.5
4.	under latm. The vap	A and B with a mole fraction pressures of pure A are street the relative volatility of	nd B at this temp	erature are 1.26	oils at 88°C and 0.5 atm
	(1) 2.52	(2) 0.4		(4) 0.52	(5) 0.6
	chloroform. Calculat	of I_2 in 50.0 cm ³ of aqueon the the percentage of I_2 exists I_2 exists I_3 exists I_4 or I_2 exists I_3 or I_4 exists I_5 or I_6 and I_8 or I_8 o	us solution is ext tracted. (K _D = 85)	racted with 25.0	0 cm ³
٠	(1) 97.7	(2) 99.9		(4) 90.0	(5) 85.5
6.	with 50.0 cm ³ of eth- water is 10. Benzoic	$K_a = 6.5 \times 10^{-5}$) originally er at pH 6. Distribution cacid is in one form in ether	oefficient, K _D of 1er. The distribut	benzoic acid ber	equilibrated tween ether and
	(1) 0.09	(2) 0.12	(3) 0.15	(4) 0.17	(5) 0.20
7.	cm ³ portion of ether.	containing 1.0 mg of tet After equilibration, the e ent K _D of tetracyclin is	racyclin in 100.0 other contained 0	cm ³ water is ext .95 mg of tetracy	tracted with 10.0 yclin only. The
	(1) 10	(2) 19			(5) 5
Qυ	estions 8-9 is based o	on the equation $f_n = \boxed{\frac{V_n}{V_n}}$	$\left[\frac{V_w}{+D_CV_a}\right]^n$ for t	he fraction of the	e solute
ег	nained after the n th ex	traction.	- · · -		
	'A' is dissolved in 50 as 5. Calculate the from (1) 1/6	O cm ³ of aqueous layer ar action of solute remained (2) 1/36	l after the 4 ^m extr	action using the	er. D _C is given equation: (5) 1/7776
	organic solvent. Give	dissolved in 10.0 cm ³ of that D_c = 9.0, how marn of organic solvent at a f (2) 2	ny times the extra ime to achieve 9	ction needs to b 9.99% extraction	e carried out
ί	Some of the factors a) densities of solvent d) Miscibilities of the			c) type of ex	tracting agent

	swer is						
	nd b) only nd d) only		and c) only of the above	: .	3) c)	and d) on	ly
11. A light (c= 3)	nt beam has k10 ⁸ m s ⁻¹ ; h	a wave length of =6.63x10 ⁻³⁴ J s) (2) 2.50 x 10 ⁻¹⁹					-
(1) 2.	18 x 10 ⁻¹⁹	(2) 2.50×10^{-19}	(3) 2.23	x 10 ⁻²⁵	(4) 2.34	x 10 ⁻¹⁸	(5) 2.45 x 10 ⁻⁷
		ectrophotometer, sample. What is					nd two thirds of i
(1) 66	5.67	(2) 33.33	(3) 80.50	_	(4) 4	0.87	(5) 50.58
corres	sponding abs	t is transmitted the	vavelength.	ple at a p	·		
(1) 0.2	1.5	(2) 0.75	(3) 0.60		(4) 0.	.40	(5) 0.50
contai conce	ning this cor ntration (mo	a molar absorptive mpound has an all l dm ⁻³) of the cor	osorbance of npound in the	0.2 at 30	0 nm in a 1 ?	cm cuve	tte. What is the
(1) 0.2		(2) 0.02	(3) 0.002		(4) 0.	.0002	(5) 2.0
		n prevents penetral What is the perce					
(1) 60		(2) 40	(3) 25		(4) 7	75	(5) 50
Spect	rophotometr	• • •				mic Abso	rption
(4) in	iysical interf terference b	y ionization	(2) chemic (5) spectra			(3) sol	vent interference
17. The SI	unit of the t	erm $\frac{RT}{nF}$ is					
(j) 1		(2) JK^{-1}	(3) J mol ⁻¹		(4) V	(5) CV
18. The fur	nction of a s	alt bridge is to					
(c) mal		st due to evapora ystem is electrica			nplete the dge the gar		circuit the two solution
(1)(a)		(2) (b) and (c) only	only (3) (c) and	(d) only	(4) (d)	and (a) only
19. Which (1) A k ⁽ 4) A ²	of the follow g ⁻¹ m ⁻² s ³ kg ⁻¹ m ⁻² s ²	wing represents the (2) A ² (5) A ²	ne unit Seime kg ⁻¹ m ⁻² s ³ kg ⁻¹ m ⁻² s ⁻¹	n of con	ductance? (3) A	² kg ⁻¹ m ⁻¹	s³
20. In pH n z is 'x'.	neasurement If the cell v	s using a combin oltage using an u	ed electrode, nknown buff	the cell er is 'y',	voltage usi the pH of	ng a buffe the unkno	er solution of pH wn buffer is
		2) $\frac{x-y}{50.14} + z$					

PART II (Structured type)

1. (i) Explain the terms, 'resonance line' and 'monochromatic light'.
(ii) Identify the main function(s) of the Hollow Cathode Lamp (HCL).

(iii) Distinguish between 'selectivity' and 'sensitivity' in relation to Atomic Absorption Spectrophotometer (AAS).
(iv) Write the advantages of AAS.
(30 marks)
2. (i) Compare the chemical principles involved in potentiometry and conductometry.
(ii) Write down the electrode reaction for the calomel electrode and hence write the expression for its electrode potential in terms of the standard electrode potential and the concentration term.

conductivity cell as 9.9x10 ⁻³ S at 27 ^o C. Given of C as 0.01337 S cm ⁻¹ , calculate the cell consta) of 0.100 mol dm ⁻³ aqueous solution of KCl in a the conductivity (κ) of 0.100 mol dm ⁻³ KCl at 27 and of the cell.
	(30 marks)
••••••	•••••

(iii) Sketch the conductometric titration curve for the titration: strong acid vs. weak base.

Indicate the equivalence point.

Answer Guide CHU 2125/CHE 4125 – Analytical Chemistry – 2011/2012 Assignment Test II

PART I (MCQ)

								. 11.19																															
	- 1											1,1					2.0		10.0																		1		2
27.0	10.0	100	2.35																									4.1	. 1		2.00		50.00			4.5	1.		
	1.				· 1					~~		~		1 :	٠. ١						-	٠.										- 4							
		1		•			2.00			. , ,		.,							11	٠.	,,							11		- 1						_	1.	4:	
	1	1		3 .						_		-			4.7	4.1			3 1		•			- 1				1. L				100				~ i			
20.0	-			-, .			3.7	- 1		2)	1.0	_	5	- 1 1			17.5		,,	Ž,	_							.,					5 5					1	
			5 5										:						•									•								5)		-	- 1
	-			~ ``				200				_			٠. ٠			1								1 .			- 3					- 1		•	100	- 1	
	^					0.00				71		~				1.0		•	17						1.1		•	``						10.00		~		-	
	.,	200	4.	٦.					1	, ,		٦.		. '-	٠.,	. * * 4		•			4									/1 . '				 1 	- 1	111		5	
	•									7)										7	7			4		1 .	- 7	, ,	: 4	-						111	1	- 3 :	
1.00										•			12	4.4	٠			_	•				4.5				_	•		•		1 1		70.00		0)			- 5
		4.	1.5		5.5			1. 0			200						- 1											•	100			1. 7	1.0			•			
	. 1			4	4.0		4 1			2	`	\neg							_)	\sim		- 1		1.3		•				100						4.5	- 2	
		- 1	- 4					4.		•		•						·,	- 4		-							л) 4	л.		5 .			. 1	5)		4	
				4 .			٠.,					_			/ .	4.7			٠		- 1					. * * .		-				*				71		4	
		•				٠.	. 10					_					- 1	•	-	•	-		٠.,						,							- 1	,	┰.	
														- 1						•						4 .		•								_ /	**		
. 1		•		ъ.						~	`								_	•	_		- 1		2.0				n .			100			**				5.3
			1.5	•					- 1	٠,	1	л			- 1	- 50					,,,				1.77		- 1	m		_					α	$\boldsymbol{\alpha}$		4	٠,
		,,		J.						•		-					1.				•							u	1	,					. ,	111			
	_	,			1.0					7		•)	-				4.0		ı	_) :				1.	1.1	_	0)		1	
		2.00	1.0								٠.					5 1				•								-,							. –	-,			

PART II (Structured type)

1. (i) Resonance Line: The best wave length of light suitable for absorption by an atom.

Monochromatic Light: Light made out of only one wave length.

- (ii) 1. Act as the radiation source for AAS
 - 2. Produce the resonance wavelength characteristic to the particular element to be analyzed.
- (iii) Here, the cathode of HCL is made up of the same element that is going to be analyzed. Therefore, this is highly selective.
 It has a very low detection limit and minute quantities can be detected.
 So Highly sensitive method.
- (iv) 1. High accuracy due to specific method for each metal
 - 2. Freedom from interference from other constituents
 - 3. Since free metal atom in the flame are detected
 - 4. High sensitivity is obtained
 - 5. The detection limit is low. (highly selective)

2.(i)	Potentiometry	Conductometry
	Electrons are involved	lons are conducting
	Measurement of the Potential difference between two points on	Measurement of the Conductance, Conductivity or electrical
	an electric circuit	resistance of an electrolyte solution

(ii)
$$Hg_2Cl_{2 (s)} + 2e \longrightarrow 2 Hg_{(l)} + 2 Cl_{(aq)}$$

$$E_{Hg^{+}/Hg} = E^{\theta}_{Hg^{+}/Hg} - \frac{RT}{2F} \ln[Cl^{-}]^{2}_{(eq)}$$

(iii)

(iv)
$$G = \kappa \left(\frac{a}{l}\right)$$

Cell constant =
$$\left(\frac{1}{a}\right) = \frac{K}{G} = \frac{0.01337 \text{ S cm}^{-1}}{9.9 \times 10^{-3} \text{ S}}$$

=135.05 m⁻¹
 $\approx 130 \text{ m}^{-1}$