THE OPEN UNIVERSITY OF SRI LANKA B. Sc. & B. Ed. DEGREE/STAND ALONE **COURSES IN SCIENCE Level 5 – 2014/2015** ASSIGNMENT TEST I (NBT) CMU3122/CME5122 - Organometallic Chemistry | DURATION: 1 hour | | | | | |--|---|--|--|--| | DATE: 1st February 2015 (Sunday) | | TIME: 4.00 p. m. – 5.00 p.m. | | | | ANSWER ALL QUESTION Select the most correct answer suitable answer on the given a counted. | er to each question given b | pelow. Mark a cross (2) r with more than one of | X) over the mos
cross will not be | | | PART A (45 marks) | | | | | | 1. The possible hapticity or h 1) η^2 only. 4) η^2 and η^4 only. | apticities of cyclopentadies 2) η^2 and η^5 only 5) η^1 , η^3 and η^5 only. | enyl ligand is/are? 3) η ¹ and η ³ o | nly | | | 2. Consider the following orgation (i) η³-C₃H₅⁻ The <i>monohapto</i> ligand/s is 1) (ii) only. 4) (ii) and (iii) only. | (ii) σ-allyl (iii) vis/are 2) (i) and (ii) only. | inyl
3) (i) and (iii |) only. | | | 3. Consider the following stat (i) CH ₂ =CH ₂ and CH ₂ (ii) CO and CS are is (iii) CN ⁻ and N ₂ are is The correct statement/s is/ 1) (iii) only 4) (ii) & (iii) only | ECH are not isoelectronic. coelectronic. soelectronic. are 2) (i) & (ii) only | 3) (i) & (iii) only | | | | 4. An L₂X type ligand is σ-allyl η⁵ 5. The IUPAC name of [FeI₂(1) Diiodo(dihaptoetheno) | | nyl 4) vinyl | 5) η^3 -C ₃ H ₅ | | | 2) Tricarbonyl(η²-ehene 2) Tricarbonyldiiodo(π² | e)diiodoferrate | | | | - 3) Tricarbonyldiiodo(η²-vinyl)iron - 4) Tricarbonyl(η²-ehene)diiodoiron - 5) Diiodotricarbonyl(η²-ehene)ferrus(II) 6. The strongest σ -donor ligand is 5) CO 2) NO⁺ 4) NMe₃ 1) PPh₃ 3) BF₃ | • | | | | | | |--|--|---|---|--|---------------------------------------| | 7. The coordination nu | mber of Fe | in [FeCl(η³-C₃H | [₅)(η ¹ -CH=C | H ₂)(CO) ₂] is | | | 1) 2 2) 3 | 3) 4 | 4) 5 | 5) 6 | | | | 8. Consider the followin (i) CF ₂ =CF ₂ is a (ii) NO ⁺ is a bet (iii) PH ₃ is a bet The correct statement | better π-acc
ter π-accepto
tter σ-donor | eptor than CH ₂ =
or than CO. | =CH ₂ . | | | | 1) (iii) only | 10/3/15/41 | 2) (i) & (ii) | only | 3) (i) & (iii) only | | | 4) (ii) & (iii) o | nly | 5) (i), (ii) d | - | | | | 9. According to ionic m 1) η^2 -C ₄ H ₄ 2) σ - | | | | donor ligand?
5) CH ₂ =CHCl | | | 10. What is true about 1 1) It is a good π-acc 3) It is a better σ-do 5) It can stabilise m | eptor.
onor than NH | [3. 4) I | | | i. | | 11. What is the Valence (Group number of Fe 1) 16 | | Sount (VEC) of 3) 18 | Fe in [FeCl(| η^3 -C ₃ H ₅)(η^1 -CH= 5) 20 | CH ₂)(CO) ₂]? | | Which one of the fo Normally oxi Coordination Coordinative Metal centre None of the a | dative additi
number of the
ly saturated of
should alway | on of X-Y to M ne metal is alwa compounds canr ys be coordinati | results in <i>tra</i> ys increased not undergo | ms-MX(Y) arrang
by two units.
exidative addition | gement. | | 13. Consider the follow (i) Carbene ligar (ii) Carbene carb (iii) M=C is attace The correct statement 1) (iii) only 4) (i) and (iii) only | nd is a 3e-doo
oon contains
ked by nucle
s/s is/are
2) | nor.
a -δ charge. | | 3) (ii) and (iii) o | nly | | 2) the M–CO
3) the bond s | racter of the bond length trength of Condon order is described. | M–CO bond is on is increased. ≡O is increased. lecreased. | | | | | 15. The d ⁿ and the oxid | ation numbe | r of Fe in [Fe(C) | S) ₂ (PF ₃)(CO)
4) d ⁷ | (2) is (Z of Fe is 20, zero 5) d^6 . | 5)
5 | T B C A R #]? THE OPEN UNIVERSITY OF SRI LANKA B. Sc DEGREE PROGRAMME 2014/2015 CMU3122/CME5122 – ORGANOMETALLIC CHEMISTRY- LEVEL 5 ASSIGNMENT TEST-I (Part A) MCQ ANSWER SHEET: Mark a cross (X) over the most suitable answer. | · | | | | Part A | - | |----------|-----------------|-----------|---------|---------|---| | Reg. No. | Fo | r Examine | ers Use | Part B | | | | | | | Total % | | | | | | Marks | | | | | Correct Answers | | | | | | | Wrong Answers | | | | | | | Total | | | | | | | | | • | | | | 1. | 1 | 2 | 3 | 4 | 5 | |----|---|---|---|---|---| | | L | L | L | | L | - 2. 1 2 3 4 5 - 3. 1 2 3 4 5 - 4. 1 2 3 4 5 - 5. 1 2 3 4 5 - 6. 1 2 3 4 5 - 7. 1 2 3 4 5 - 8. 1 2 3 4 5 - 9. 1 2 3 4 5 - 10. 1 2 3 4 5 - 11. 1 2 3 4 5 - 12. 1 2 3 4 5 - 13. 1 2 3 4 5 - 14. 1 2 3 4 5 - 15. 1 2 3 4 5 # Part B (55 marks) Answer all the questions in the space provided. Attached sheets will not be graded. - 1. (a) Give the IUPAC name for $[Fe(\eta^1-CH=CH_2)(\eta^1-C_3H_5)(\eta^4-C_4H_4)]$. - (b) Draw the structure of [Fe(η^1 -CH=CH₂)(η^1 -C₃H₅)(η^4 -C₄H₄)]. - (c) Determine the VEC of Ru in $[RuBr_2(CN)(\eta^2-C_4H_4)(CO)_2]$ using ionic model. (Indicate your break down; Group number of Ru is 8) - (d) What is the coordination number of Mo in [MoCN(η^5 -C₅H₅)(CO)₂(η^2 -C₄H₄)]. - (e) Draw the structures of the FOUR isomers of [Fe(CS)₂(PF₃)(CO)₂] with the trigonal bipyramidal geometry. (f) Draw an orbital diagram to show the π -overlap between Fe and CO in [Fe(CO)₅]. ## The Open University of Sri Lanka B.Sc. Degree Program 2014/2015 CMU3122/CME5122 – Organometallic Chemistry - Level 5 Answer Guide to CAT-I held on 01-02-2015 ### Part A - MCQ ANSWERS | 1. (5) | 2. | (4) | 3. (1) | 4. | (2) | 5. (4) | |---------------|----|-----|----------------|----|-----|----------------| | 6. (4) | | (5) | 8. (2) | 9. | (3) | 10. (4) | | 11. (2) | | (5) | 13. (1) | | (5) | 15. (3) | #### Part B ıI (1)(a) (η¹-allyl)(η⁴-cyclobutadiene)(η¹-vinyl)iron or (η¹-allyl)(η⁴-cyclobutadiene)(η¹-ethenyl)iron (c) VEC = $$[(Ru^{3+}; 5e) + (2Br^{-}; 4e) + (CN^{-}; 2e) + (\eta^2 - C_4H_4; 2e) + (2CO; 4e)] = 17e$$ (d) Coordination number = No. of electron pairs = 1 (CN)) + 3 ($$\eta^5$$ -C₅H₅) + 2 (2×CO) + 1 (η^2 -C₄H₄) = 7 (f) $$M = Fe$$