

Reg. No.									
----------	--	--	--	--	--	--	--	--	--

THE OPEN UNIVERSITY OF SRI LANKA

B.Sc. Degree Programme

and Stand Alone Courses in Science - 2014/2015

CMU2221/CME4221 - Organic Chemistry 1

CONTINUOUS ASSESSMENT TEST 1

Ques No.	Max.	Marks
1	25	
2 .	30	
3	45	
Total	100	

Saturday	07 th	February	20	1.5
Saturday	V/	1 Coruary	40.	·

2.30 p. m.-3.30 p. m.

ANSWER ALL QUESTIONS

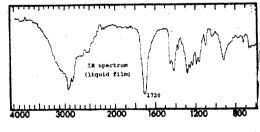
1. (a) Giving one reason state how you would distinguish between the compounds in the following pairs using IR spectroscopy.

(i) and

В

(ii)

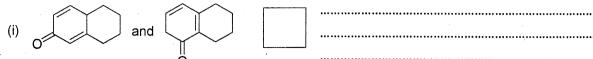
D

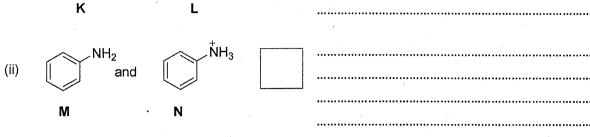

(iii)

and

CH₂OH

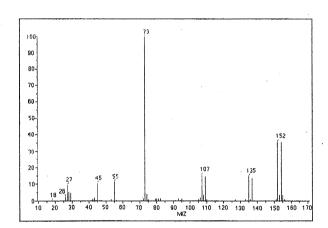
(15 Marks)


(b) Which of the given structures G - J fits best to the IR spectrum below? Explain your answer.



(10 Marks)

	-	 	 		 V
Reg. No.			,		

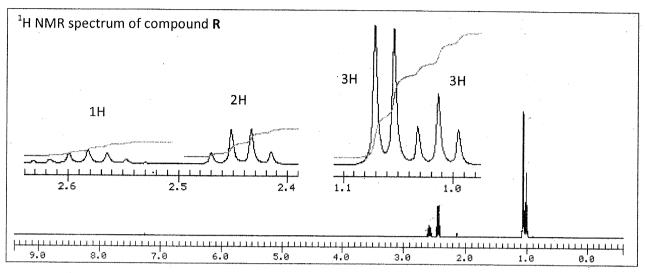

2. (a) Which compound in each of the following pairs shows higher λ_{max} in UV-Vis spectroscopy? Give your reason.

(10 Marks)

(b) Following is the mass spectrum of a monohalogenated organic compound. What is the halogen present in this molecule? Explain your answer.

(10 Marks)

(c) Compound Q showed a peak at m/z 58 in its mass spectrum among other peaks. Showing the fragmentation pathway, postulate the structure of the fragment ion responsible for this peak.


$$CH_3$$
 CH_3
 CH_2CHCH_3
 CH_3

m/z 58

(10 Marks)

Reg. No.						-
	L	L	 	,		

3. 1 H NMR spectrum of compound **R** (C_{6} H $_{12}$ O) along with some useful expansions is given below. The IR spectrum of **R** showed a strong absorption at 1712 cm $^{-1}$ among other peaks while no absorptions are observed above 2900 cm $^{-1}$.

(a) What is the possible functional group present in Q?

What information you get from the statement, "no absorptions are observed above 2900 cm⁻¹"?

How many different types of protons are there in compound Q?

Label them using A, B, C, D etc.

- (b) What are the different spin systems present in this molecule?
- (c) Deduce the structure of compound **H** and assign the ¹H NMR signals to the proposed structure.

(45 Marks)

Reg. No.						
		 	•			

Name	<u> </u>
Address	:

- 1. (a) (i) One of the following answers is acceptable.
 - Compound A, gives a broad absorption band little above 3000 cm⁻¹ due to -OH stretching. Such a broad band in this region is not given by **B**.
 - Compound B, gives two sharp peaks due to -N-H stretching in the region just above 3000 cm⁻¹. No such two sharp peaks in the IR spectrum of A.
 - Compound A, gives a broad absorption band in its IR spectrum little above 3000 cm⁻¹ due to -OH stretching while compound B gives two sharp peaks due to -N-H stretching in the same region.
 - (ii) One of the following answers is acceptable.
 - Both compounds have -C=O groups, which show absorption around 1700 cm⁻¹. But compound C only has a conjugated carbonyl group. Therefore it shows absorption at a lower frequency than D.
 - Sharp absorption band in the fingerprint region around 1200 cm⁻¹ due to -C-O stretching is observed in the spectrum of **D**. This is absent in the spectrum by **C**.
 - (iii) A broad absorption band above 3000 cm⁻¹ is observed due to -OH stretching in the IR spectrum of F. But there is no such band in this area in the IR spectrum of E.

(b) Structure H

The prominent broad absorption band above 3000 cm⁻¹ indicates absorption by -O-H stretching overlapping with -C-H stretching by an acidic -OH group (-OH of a -COOH group). Therefore the compound could be either **H** or **J**. If it is **J**, it should show absorption due to -C=C- stretching around 1600 cm⁻¹ in addition to -C=O absorption band around 1700 cm⁻¹. Since it is not present in the spectrum, the compound should be **H**.

- 2. (i) L Both compounds are α , β unsaturated ketones (or enones). But in compound L has an extra double bond in conjugation. Hence λ_{max} is higher in L than K.
 - (ii) M Compound M only has a lone pair of electrons on nitrogen which can be conjugated with the benzene ring. Due to conjugation, M shows higher λ_{max} than N.
 - (b) Compound has two lines each for M⁺ and two other fragment ions in its mass spectrum. Therefore compound contains a halogen which has isotopes. Out of Cl and Br, halogen which shows 1:1 isotope abundance is Br. (Cl shows 3:1 isotopic abundance). Therefore, the halogen present in the compound is Br.

(c)

McLafferty Rearrangement

- 3. (a) -C=O / carbonyl group is present. -OH group is absent. 4 (four) different types of protons/hydrogens are present in compound R. Chemical shifts (δ) of A: 2.58 ppm, B: 2.44 ppm, C: 1.06 ppm, D: 1.01 ppm
 - (b) $-CH_2CH_3$ and CH_3-CH_3