## The Open University of Sri Lanka Faculty of Engineering Technology



Study Programme

: Bachelor of Technology (Engineering)

Name of the Examination

Final Examination

**Course Code and Title** 

: MEX6272 Intelligent Control

Academic Year

: 2013/2014

Date

: 15<sup>th</sup> of August 2014

Time

: 9.30am - 12.30 pm

Duration

: 3 hours

## **General instructions**

1. Read all instructions carefully before answering the questions.

2. This question paper consists of 6 questions.

3. Question 1 is compulsory. Answer any three from questions 2 to 6.

Q1.

a)

(25 marks)

Consider the fuzzy controller design of a washing machine to automate the *wash time*. The fuzzy logic system need to process the two inputs for the system that are *Dirt(D)* and *Grease(G)* of the clothes to be washed. A fuzzy logic control system will process these, giving a single output, *Wash time(T)*.

The following fuzzy quantities are defined, with the corresponding states:

D: Dirt (SD: Small Dirt, MD: Medium Dirt, LD: Large Dirt)

G: Grease (NG: No Grease, MG: Medium Grease, LG: Large Grease)

T: Wash Time(VS: Very Short, S: Short, M: Medium, L: Long, VL: Very Long)

The membership functions of these quantities are given in Figure Q1.a

The rule base isgiven in Table 1 as follows:

Dirt

|    | NG | MG | LG |
|----|----|----|----|
| SD | VS | M  | L  |
| MD | S  | M  | L  |
| LD | M  | L  | VL |

Table Q1

At a given instant, the following set of sensor data is available:

- Dirt-60
- Grease-75



- i. List the Linguistic variables and Linguistic values of this fuzzy system.
- ii. Write down rules that would **fire** for the given instance.
- iii. Determine the corresponding inference membership function for the Wash Time.
- iv. Determine the crisp value for the control action.

(Hint: Use Max-Min inference method and Centroid method as applicable.)







b)

(15 marks)



Figure Q1.b

Assume that the neurons have a Bipolar continuous activation function and that  $\lambda = 1$ and  $\eta$  =1. Use Backpropagation method to find the old and new errors of the trained network.

Use the standard error finding method to find the error.

[Error = Output(1-Output)(Target-Output)]

Q2. (20 marks)

a)Consider a first order fuzzy dynamic system whose free (unforced; input =0) response is given by

$$X_{i+1} = X_i \circ R$$

Where

 $X_i$ = discrete membership function of the j<sup>th</sup>fuzzy state transition.

R = matrix representing the fuzzy rule base relation of state transition.

Find whether the fuzzy systems are stable or not for the following cases.

i. 
$$R = \begin{bmatrix} 0.5 & 0.4 \\ 0.4 & 0.5 \end{bmatrix}$$
ii. 
$$R = \begin{bmatrix} 0.4 & 0.4 \\ 0.5 & 0.4 \end{bmatrix}$$

ii. 
$$R = \begin{bmatrix} 0.4 & 0.4 \\ 0.5 & 0.4 \end{bmatrix}$$

b) A fuzzy system is represented by  $P^1$ : If x(k) is  $A^1$  then  $x^1(k+1) = 1.2x(k) - 0.6x(k-1)$ 

 $P^2$ : If x(k) is  $A^2$  then  $x^2(k+1) = x(k) - 0.4x(k-1)$ 

Where Ai, i=1,2 are shown in the Figure Q2. Check if the system is stable by

Lyapunov's method if the positive definite matrix is  $P = \begin{bmatrix} 2 \\ -1.2 \end{bmatrix}$ 





Figure Q2

a) Let U={a, b,c,d} be the domain and A and B be fuzzy sets on U as given on the Table Q3.

|   | a   | ь   | С   | d   |
|---|-----|-----|-----|-----|
| A | 0.5 | 0.8 | 0.0 | 0.3 |
| В | 0.2 | 1.0 | 1.0 | 0.7 |

Table Q3

Proof the following property of fuzzy sets A and B which is known as De Morgan's law  $(A \cup B)^1 = A^1 \cap B^1$  considering the above values.

b) Consider the ternary fuzzy relation T on  $U \times V \times W$ , where U={a,b}, V={x,y} and W={&,\*} are fuzzy sets;

$$T = \frac{0.1}{(a, x, \&)} + \frac{0.8}{(b, x, \&)} + \frac{0.5}{(a, y, \&)} + \frac{0.9}{(a, y, *)} + \frac{0.2}{(b, y, *)}$$

- i. Find  $T_1$  and  $T_2$
- ii. Find  $T_{12}$
- c) The logical implication in the linguistic rule form: if A then B, can be translated into a relation R using the Cartesian products sets A and B as  $R = (A \times B) \cup (\overline{A} \times Y)$ .

Let the two universes of discourse be described by  $X=\{1,2,3,4\}$  and  $Y=\{1,2,3,4,5,6\}$ . If the crisp set A is defined as  $A=\{1,4\}$  on X and B is defined as  $B=\{1,3,5,6\}$  on Y.

Determine the deductive inference IF A, THEN B.

Q4. (20 marks)

- a) Draw a suitable diagram to show the main components of an artificial neuron.
- b) The "glass data set" is a famous dataset that has been used in pattern recognition. A neural network can be built to predict the type of the glass (window glass or non-window glass) based on the measurements of the chemical content.

The data set consists of 214 samples.

Attribute information:

Refractive index

Sodium

Magnesium

Aluminum

Silicon

Potassium

Calcium

Barium

Iron

00004

State the following with **reasons** for the neural network that you propose for the glass classification.

- i. Number of input nodes
- ii. Number of hidden layers
- iii. Number of output nodes
- c) Compare and contrast Hebbian and Delta training rules considering neural networks.
- d) Briefly discuss the difference between Binary and Continuous Activation functions.
- e) Back Propagation Algorithm is an example of Supervised Learning method. Comment on this statement.

Q5. (20 marks)

a) Draw the complete architecture of a Fuzzy logic controller. Name all parts of it and using suitable examples describe their functionalities.

- b) Figure Q5 shows a ROC (Receiver Operating Characteristic)plot obtained after training anANN (Artificial Neural Network) using MATLAB software. Answer the following questions considering Figure Q5.
  - i. What does a ROC curve demonstrate?
  - ii. What comment can you make about the Training ROC plot.
  - iii. Indicate the number of the worst classifier. (Please select a number from 1 to 4 according to the labels)
  - iv. What is the reason to consider three different ROC plots as Training ROC plot, Validation ROC plot and Test ROC plot?



Q6.

- a) Briefly explain an application of Genetic Algorithm.
- b) List two characteristics of intelligence and state whether they are applicable for ANN.
- c) Name the suitable AI technique to use for each application given below.
  - i. Medical diagnosis system
  - ii. Signature recognition system
  - iii. Autonomous underwater vehicle control system
- d) Discuss the characteristics of intelligent machines.
- e) What are the main components of an expert system?

**END**