THE OPEN UNIVERSITY OF SRI LANKA DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

FINAL EXAMINATION - 2013/2014

ECX6239 – WIRELESS COMMUNICATION

(Closed Book)

Answer any five questions.

Date 31.08.2014

Time: 13:30-16:30 hrs.

Gaussian distribution: $N(\mu, \sigma) \sim \frac{1}{2\pi\sigma^2} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ Q-function: $Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^{\infty} e^{-\frac{u^2}{2}} du$

Q1.

- (a) Define coherence time and coherence bandwidth and state their importance in communicating over fading channels. (4Marks)
- (b) Macrodiversity is a technique to reduce the effect of fading. Explain the principle of macrodiversity. (4Marks)
- (c) A certain communication system deploying macrodiversity has a mobile placed at the midpoint between two identical base stations transmitting at W dBW. The received signals at the mobile in dBW are $P_1 = W + Z_1$ and $P_2 = W + Z_2$. Here Z_1 and Z_2 are independently and identically distributed Gaussian random variables with zero mean and σ^2 variance.
 - i. Interpret the terms Z_1 and Z_2 . What phenomena contribute to Z_1 and Z_2 ?

ii. If the threshold received level is T dBW, show that the outage probability at the mobile is given by,

$$P_{out} = \left[Q\left(\frac{W-T}{\sigma}\right) \right]^2.$$
 (8Marks)

Q2.

(a) Briefly explain the origin of the three adverse effects fading, shadowing and noise.

(6Marks)

- (b) Fading/shadowing may result in outages. Define outage probability. (4Marks)
- (c) A certain cellular base station with a cell radius of 1km transmits 80mW and the path loss follows a model $P_r = P_t \left(\frac{1}{r^3}\right)$. The system also suffers from lognormal shadowing with $\sigma = 16dB$ (distribution of $10\log\left(\frac{P_t}{P_r}\right)$ follows a normal distribution). Let the minimum received power requirement of the mobile stations be -100dBm. Calculate the coverage area within the cell. [You may state your answer in terms of a Q function] (10Marks)

- Q3. A certain wireless communication system with a noise power spectral density $\frac{N_0}{2}$ has the same signal communicated in two independent time slots and the received signals are r_1 and r_2 . Let the two received signals are co-phased, weighted and combined to form a signal $r = w_1 r_1 + w_2 r_2$.
 - (a) What possible combinations of w_1 and w_2 weights are being practically used in different combining techniques? (3Marks)
 - (b) Write an expression for the overall SNR at the output of the combiner. (4Marks)
 - (c) Hence prove that the maximum combined SNR is achieved when $w_1^2 = \frac{r_1^2}{N_0}$ and $w_2^2 = \frac{r_2^2}{N_0}$.
 - (d) Show that the optimum combined signal SNR is equal to the sum of individual signal SNRs. (5Marks)

Q4.

- (a) List the advantages in modulating the digital signals. (3Marks)
- (b) Using the constellation diagrams explain how QAM modulation provides a better bandwidth efficiency-error tradeoff compared to PAM and PSK modulation schemes.

 (6Marks)
- (c) Consider a binary transmission system which uses $\frac{A}{2}$ and $-\frac{A}{2}$ levels to represent 1 and 0 respectively. The data rate is $R_h bps$.
 - i. What is the minimum bandwidth required. (3Marks)
 - ii. This data stream is to be transmitted by a M-ary PAM scheme maintaining the same noise immunity. If each of the 1 and 0 are equally probable, show that the transmit power requirement is $P = \frac{(M^2-1)A^2}{12log_2M}$. (8Marks)

 [Hint: $\sum_{i=1}^{n} (2i-1)^2 = \frac{n}{3} (4n^2-1)$]

Q5.

- (a) Compare and contrast the linear block codes and the convolutional codes (highlight the encoding, decoding techniques). (4Marks)
- (b) List a practical deployment of each of these two categories of error correction codes.

(2Marks)

(c) Consider a linear block code with a generator matrix G,

$$G = \left(\begin{array}{ccccccc} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{array}\right).$$

Find,

- (i) the complete codeword set (4marks)
- (ii) the minimum distance (2marks)
- (iii) parity check matrix (4marks)
- (iv) syndrome vector for a an input bit vector (1 0 1 0 1 0) at the decoder. (4marks)

(a)

- i. What is OFDM? Explain how OFDM achieves higher spectral efficiencies in cellular communication. (4Marks)
- ii. List three OFDM using networks and compare their spectral efficiencies. (3Marks)
- (b) A certain cellular system has hexagonal cells and system deploys clustering to avoid cochannel interference. Let the distance to a mobile from the serving base station be d_S and the distance from closest other base station using the same channel be d_I .
 - i. Assuming a free space path loss model with a path loss exponent 2, show that signal to interference ratio $\left(\frac{s}{I}\right) = 20 \log \left(\frac{d_I}{6d_S}\right) \ dB$. (5Marks)
 - ii. Thus, determine a suitable reuse factor for a threshold $\frac{s}{l} = -4dB$. (4Marks)
 - iii. If the cellular system uses a total bandwidth of 50MHz and a subscriber requires 50kHz (simplex), calculate the system capacity for 100 base stations. (4Marks)

Q7.

- (a) Compare different generations of cellular communication systems focusing on the multiple access technique, capacity and the efficiency. (4Marks)
- (b) "CDMA is an interference limited system". Discuss. (6Marks)
- (c) Consider a CDMA system occupying a 10MHz spectrum. Assume an interference limited system with a spreading gain of G and code correlation ξ .
 - i. Find a formula for the signal to interference ratio (SIR) of the received signal for a K number of subscribers. Assume that all subscribers transmit at the same power and the power control mechanism ensures that all subscribers have the same received power. (5Marks)
 - ii. Hence find the maximum number of simultaneous users which can be supported if threshold SIR is 7dB, G = 100 and $\xi = 0.67$. (5Marks)

Q8.

(a)

- i. What is MIMO? What are the advantages of deploying MIMO? (4Marks)
- ii. Consider a $M_r \times M_t$ MIMO channel with the gain matrix H. Let the singular value decomposition of H is given by $U\Sigma V^H$ where U and V are unitary matrices and Σ is a diagonal matrix with singular values of H. Show that $\tilde{y} = Uy$ transformation converts the MIMO system to a set of SISO systems. (6Marks)

(b)

- i. Why is dynamic resource allocation beneficial in cellular systems? What resources can be dynamically allocated? (4Marks)
- ii. Cognitive radio supports dynamic resource allocation. Explain the concept of cognitive radio. (6Marks)