The Open University of Sri Lanka

Foundation Certification Course in Science

Faculty of Natural Sciences

Department of Chemistry

Chemistry - I / CMF2205 - 2013/2014

Assignment Test II		
Registration Number:		
Name :	 e ⁴	

This question paper consists of 2 PARTS A & B.

PART A carries 20 multiple choice questions PART B carries two structured type questions.

ANSWER ALL QUESTIONS

INSTRUCTIONS:

Each item is a statement or question that may be answered by one of the five responses given.

There is only **one best** answer to every question. Mark a cross (X) over the most suitable answer. For each correct response, **03** marks will be awarded. For each incorrect response, **0.5** marks will be deducted.

The Open University of Sri Lanka

Foundation Certification Course in Science

Faculty of Natural Sciences

Department of Chemistry

Chemistry - I / CMF2205 - 2013/2014

Assignment Test II

Date: (Wednesday) 19. 12. 2013

Time: 2.30 pm - 4.00 pm

Instruction to candidates

- The paper consists of two parts, Part A (20 MCQ) and Part B (2-structured essay).
- Choose the most correct answer to each question and mark a cross "X" over the answer on the answer sheet.
- Any answer with more than one cross will not be counted.
- Each correct answer will get 3 marks.
- 0.5 marks will be deducted for each incorrect answer.
- The use of a non programmble electronic calculator is permitted.

ANSWER ALL QUESTIONS.

සියළුම පුශ්නවලට පිළිතුරු සපයන්න.

PART - A

1. Which of the following statements are correct?

පහත වගන්ති අතරින් නිවැරදි වගන්ති වනුයේ,

- (a) Primary C-atom is bonded to one carbon atom. පාටමික C- පරමාණුව එක් කාබන් පරමාණුවක් සමහ බන්ධන සාදයි.
- (b) Secondary C-atom is bonded to two other carbon atoms. ද්විතික C- පරමාණුව වෙනත් කාබන් පරමාණු 2 ක් සමඟ බන්ධන සාදයි.
- (c) Tertiary C-atom is bonded to four other carbon atoms. තෘතික C- පරමාණුව වෙනත් කාබන් පරමාණු 4 ක් සමඟ බන්ධන සාදයි.
 - (1) a, and b only.

(2) b, and c only.

(3) a, and c only.

(4) a, b, and c all.

(5) a, b, and c, all incorrect.

2. The correct name for the compound,

පතත සංයෝගයෙහි නිවැරදි නාමය වනුගේ

- (1) 1-Bromo-4-hydroxy pentanal.
- (2) 2-Bromo-5-hydroxy-1-hexanal.
- (3) 2-hydroxy-5-Bromo-6-hexanal.
- (4) 2-hydroxy -5-Bromo-1-hexanal.
- (5) None of the above.
- 3. Which of the following can exhibit cis, trans isomerism? පහත සංයෝග අතරින් සිස්, ටුාන්ස් සමාවයවික අන්තර්ගත වනුයේ,

$$CI$$
 CI
 CI
 CI
 CI
 $COOH$
 $COOH$
 $COOH$
 $COOH$

- (1) a and d only. (2) a and c only. (3) a, b and d only. (4) b, c and d only. (5) All.
- 4. The correct structure of the compound 3-methylbutyl-2-chlorohexanoate is

3-methylbutyl-2-chlorohexanoate නාමකරණයට අදාළ සංයෝගයෙහි නිවැරදි වනුභය වනුයේ

5. The number of chain isomers in C_6H_{14} is

 $\mathbf{C}_6\mathbf{H}_{14}$ ට අදාළ දාම සමාවයවිකයන් ගණන වනුයේ

- (1) 3
- (2) 4
- (3) 6
- (4)5
- (5) 7

6.	n-Butanol and	diethyl ether are	. "			
	n- බියුටනෝල්	(n-Butanol) සහ	ඩ යිඑතිල් ඊ	් diethyl	ether)	
	(2) Position iso (3) Stereo ison (4) Geometrica	ers / දාම සමාවය mers./ ස්ටාන (P ners. /තිමාණ (Ste al isomers./ ජන් isomers./ කියාකාර	rosition) සම reo) සමාවයේ මීතික සමාවය	විකයන්ය. විකයන්ය.		
7.	How many isom	eric alcohols are	possible wit	h molecular	formula C ₅ H ₁₂ O ?	
	C₅H ₁₂ O ඇණුක සූ	අතුයට අදාළ සමා	වයවික ඇල්	කොහොල සංද	බහව වනුයේ,	
	(1) 4	(2) 5	(3) 6	(-	4) 7	(5) 3
8.		omerism in alken enes) ජනාමිතික		වට හේතු වද	තුයේ,	
	(2) Optical rota (3) Restricted ro (4) Oscillation (හනුසංයුජතා (po	tion about C=C b	ond. (C=C) C bond. (C= en two polyv නු 2 ක් අතර	බන්ධනයෙහි :C) බන්ධනයෙ ralent atoms o H- පරමාණු		කය.
9.	Geometrical iso	merism is exhibi	ced by ජනම්	බික සමාවය <u>වි</u>	කතාව අන්තර්ගත	වනුයේ,
	, ,	e. 2- බියුටීන් propene. 1- ෆීනරි	,	b) Propend (d) 2-meth	e. පොපින් yl-2-butene <i>.</i> 2- ්	ම්තයිල්-2-බ් <u>ය</u> ුටින්
	(1) a and b on (4) a and c on	•		nd d only.		and c only.
10	. In the addition addition of,	of HBr to prope	ne(in the ab	sence of per	oxide), the first st	ep involves the
	පොපින් අණුවර) HBr ආදේශයට	(පෙරොක්සරි	සීඩ් රහිතව) අ	ාලභපි මෙරපු පුයුතු	ර වනුයේ
	(1) Br^+	(2) Br^{-}	(3)	Br	(4) H [•]	(5) $H^{^{\scriptscriptstyle +}}$

				•	• .
11.	ammonical silve පහත සංයෝග අ	r nitrate? තරින් බේයර්ස්	nd decolorizes Bay පුතිකාරකය (Baye mmonical silver r	r's reagent) විවර්	
	(1) C ₂ H ₄ (4) C ₂ H ₆	• •	CH ₄ i) None of the Ans	wers 1,2,3,and 4	(3) C_2H_2 are correct.
12.	For the reaction (a	t 25 °C), CO _(g)	+ 2H _{2(g)} — CH	₃ OH _(g)	
2	25 °C හිදි CO _(g) + 2	2H _{2(g)} — CH	l₃OH _(g) පුතිකියාව	ට අදාළ	
	(1) K _p =K _c (1)	2) K _p <k<sub>c (3</k<sub>	s) $K_p > K_c$ (4)	$K_p = K_c = 0$ (5) $K_c = 0$ but $K_p \neq 0$
13 .	. The decomposition	on of N ₂ O _{4(g)} to	NO _{2(g)} is carried o	out at 280 °C . Wh	nen equilibrium is
	reached, 0.2 mol	of $N_2O_{4(g)}$ and	2 x 10 ⁻³ mol on N(D _{2(g)} are present	in 2 liters of solution.
	The K _c for the re	action N ₂ O _{4(g)}	NO _{2(g)} is		
	සහ 2 x 10 ⁻³ mo	l NO _{2(g)} ළාව	ට වියෝජනය වේ. ණ ලිටර් දෙකක් පුතිකිුයාවේ K _c	තුල අන්තර්ගත ල	හවේදි 0.2 mol N ₂ O _{4(g)} වේ.
	(1) 1×10^{-2}	2) 2 x 10 ⁻³	(3) 1 x 10 ⁻⁵	(4) 2 x10 ⁻⁵	(5) 1 x 10 ⁻³
14.	$\frac{\mathrm{Kp}}{\mathrm{K}_{\mathrm{C}}}$ for the reac				A Commence of the Commence of
	$CO_{(g)} + \frac{1}{2}O_{2(g)}$	CO _{2(g)} e	තිකියාවෙහි $\dfrac{\mathrm{Kp}}{\mathrm{K}_{\mathrm{C}}}$	අගය වනුයේ	
	(1) RT	(2) (RT) ^{1/2}	(3) 1	(4) 1/(RT) ^{1/2}	(5) 1/RT
15	strongest acid is		-	•	corresponding to the වුයක pKa අගය වනුයේ
	(1) 3.5	(2) 4.0	(3) 3.0	(4) 2.5	(5) 2.0

16. The set with the correct order of acidity is. ආම්ලිකතාව නිවැරදි පිළිවෙලට දක්වා ඇති ගොනුව වනුයේ
(1) HCIO < HCIO ₂ < HCIO ₃ < HCIO ₄ (2) HCIO < HCIO ₃ < HCIO ₂ < HCIO ₄
(3) HCIO < HCIO ₂ < HCIO ₄ < HCIO ₃ (4) HCIO ₄ < HCIO ₂ < HCIO ₃
(5) HClO ₃ < HClO ₂ < HClO ₄
17. Among the following compounds, which one has the strongest acidic hydrogen?. පහත සංයෝග අතරින්, ඉතා පුබල ආමිලික හයිඩුජන් අන්තර්ගත සංයෝගය වනුයේ
(1) C_6H_6 (2) C_2H_2 (3) CH_3OH (4) C_2H_6 (5) C_2H_4
18. If a saturated aqueous solution of Ag ₂ CrO ₄ contains 0.0435 g of Ag ₂ CrO ₄ in 1 dm ³ of
solution at 25^{0} C, the solubility product of $Ag_{2}CrO_{4}$ (in mol^{3} dm $^{-9}$) is 25^{0} C නිළි $Ag_{2}CrO_{4}$ සංතෘප්ත ජලිය දාවණ $1dm^{3}$ තුළ $Ag_{2}CrO_{4}$ 0.0435 g අන්තර්ගත වේ නම් $Ag_{2}CrO_{4}$ හි දාවසතා ගුණිතය ($mol^{3}dm^{-9}$) වලින් වනුයේ (1) 8.78×10^{-5} (2) 8.78×10^{-6} (3) 8.78×10^{-12} (4) 8.78×10^{-10} (5) 8.78×10^{-8}
19. The solubility of Al(OH) ₃ is X mol dm ⁻³ ; its solubility product is,
Al(OH) ₃ හි දාවපතාව X mol dm ⁻³ වේ නම් එහි දාවපතා ගුණිතය වනුයේ
(1) X^2 (2) X^3 (3) $4 X^3$ (4) $27 X^4$ (5) $81 X^3$
20. 1g of iodine, dissolved in 20 cm³ of potassium iodide solution, is shaken with 20 cm³ of tetracloromethane (an organic liquid) at 25 °C. The partition coefficient between tetrachloromethane and water is 85 at 25 °C. How much of iodine (in g) is transferred into tetrachloromethane? 25°C හිදී අයඩින් 1g, පොටැසියම් අයඩයිඩ් දාවණ 20cm³ තුළ දාවණය කර ටෙට්රාක්ලෝරෝමීතේන් (tetracloromethane) (කාබනික දාවණයක) 20cm³ ක් සමඟ මිශු කරන ලදී. ටෙට්රාක්ලෝරෝමීතේන් සහ ජලය අතර 25 °C දී වනුප්ති සංගුණකය 85 වේ. ඒ අනුව ටෙට්රාක්ලෝරාමීතේන් තුළට ඇතුළු වූ අයඩින් (g වලින්) පුමාණය වනුයේ
(1) 0.198 (2) 0.288 (3) 0.488 (4) 0.688 (5) 0.988

PART - B

1. (a) . The solubility-product constant, Ksp, of AgBr is $5 \times 10^{-13} \text{ mol}^2 \text{dm}^{-6}$ at 298 K. Write the expression for the solubility-product constant, Ksp, of AgBr at 298 K.

298 K. හිදී AgBr වල දාවපතා ගුණිතය $Ksp = 5 \times 10^{-13} \text{ mol}^2 \text{dm}^{-6}$ වේ. ඒ අනුව 298 K දී AgBr හි දාවපතා ගුණිතය සඳහා පුකාශයක් ලියා දක්වන්න.

(b) Calculate the value of [Ag⁺] in 50.0 mL of a saturated solution of AgBr at 298 K. 298 K. නිදි AgBr සංතෘප්ත දාවණ 50.0 mL තුළ අඩංගු [Ag⁺] ගණනය කරන්න.

(c) A 50.0 mL sample of distilled water is added to the solution described in part (b), which is in a beaker with some solid AgBr at the bottom. The solution is stirred and equilibrium is re-established. Some solid AgBr still remains in the beaker. Is the value of [Ag⁺] greater than, less than, or equal to the value you calculated in part (b) ? Justify your answer.

පතුලෙහි AgBr ශනය අඩංගු බීකරයක් තුළ ඇති (b), කොටසෙහි විස්තර කරන ලද වුවණයට ආසුැති ජලය 50.0~mL ක් දමන ලදී. වුවණය දියකර නැවත එය සමතුලිතතාව ලබන තෙක් පසෙකින් තබන ලදී. දිය කිරීමෙන් පසුව ද බීකරය තුළ AgBr ඝනය ඉතිරිව තිබුණි. $[Ag^{\dagger}]$ (b), කොටසෙහි ගණනය කරන ලද අගයට වඩා වැඩිවේ. අඩුවේ හෝ සමාන වේ. පිළිතුර පහදන්න.

(d) Calculate the minimum volume of distilled water, in cm³, necessary to completely dissolve a 0.00287 g sample of AgCl(s) at 298 K.
298 K හිදි AgCl(s) 0.00287 g ආසුැත ජලයෙහි දිය කරයි නම් අවශා අවම ආසුැති ජල පරිමාව වනුයේ , (298 K දී AgCl K_{sp} 1.6 x 10⁻⁹ mol² dm⁻⁶ සහ AgCl වල පරමාණුක ස්කන්ධය 143.5 g mol⁻¹)

(K_{sp} of the AgCl at 298 K is 1.6 x 10^{-9} mol² dm⁻⁶ and the molar mass of AgCl is 143.5 g mol-1.)

(a) Write down the IUPAC name of the compound
 පහත සංයෝගයෙහි IUPAC නාමය ලියා දක්වන්න.

(b) Indicate the hybridization of each carbon atom of the following two compounds පහත සංයෝග 2 හි සෑම C පරමාණුවකට අදාළ මුහුමිකරණය ලියා දක්වන්න.

(c) Draw all reasonable resonance structures for the following species.

පහත විශේෂ 2 ට අදාළ සමස්ථානික ලියා දක්වන්න.

(b)

. N≡c—s¯

0

(d) The following tests were carried on compound $\bf A$ (C_4H_6) $\bf A$ (C_4H_6) සංයෝගයට පහත පරීක්ෂණ සිදු කරන ලදී

Determine the structures of A, P, Q, and R,

A, P, Q, හා R, හඳුනා ගන්න.

The Open University of Sri Lanka Foundation Certificate Course in Science – 2013 / 2014 Faculty of Natural Sciences, Department of Chemistry CMF2205: Home Assignment II - Answer Guide

MCQ

1. 1 2. 2 3. 1 9. 4 10.5 6. 12. 2 17. 2 11. 1 13. 3 14. 15, 5 16. 18. All 19. 4 20.5

1. (a).

$$K_{sp} = [Ag^{+}_{(aq)}][Br^{-}_{(aq)}]$$

(b) Let x = equilibrium concentration of Ag+ (and of Br-).

Then $K_{sp} = 5.0 \times 10^{-13} = x^2 \Rightarrow x = 7.1 \times 10^{-7} \text{ mol dm}^{-3}$

(c) The value of [Ag+] after addition of distilled water is equal to the value in part (b). The concentration of ions in solution in equilibrium with a solid does not depend on the volume of he solution.

(d) Solubility of AgCl is 4×10^{-5} mol dm⁻³ $\frac{0.00287 \times 1000 = 4 \times 10^{-5}}{143.5 \times V}$ $V = 500 \text{ cm}^{3}$

2. (a) 6-methylhept-2-ene-4-one

(b)

(b) (1) (2)

(c) N = C - S N = C = S

(ii)

(d)