

The Open University of Sri Lanka Faculty of Engineering Technology Industrial Studies Program Final Examination- 2008

AEZ3238 Mathematics for Agriculture

Date

: 02-04-2009

Time

: 0930-1230 hours

SECTION II

1. Solve the following equations;

(a) (i)
$$\frac{2(2x-1)}{3} - \frac{2}{5} = \frac{x+3}{15}$$

(ii)
$$x + 2y = 9$$

 $2x - y = -2$

- (b) Length of a rectangular land is 10m more than its width. The area of the land is 600m². Find the length and with of the land
 - 2. (a) Find the area of the following shape lands

(i)

(ii)

- (b) When a man see the top of a tree, he observe that angle of elevation is 30° . When he walked 8m towards the tree he observes that the angle of elevation is 60° . Find the height of the tree.
- (3) (a) Prove that
 - (i) $Sin^2\theta + Cos^2\theta = 1$
 - (ii) $Sec^2 \theta = 1 + Tan^2 \theta = 1 + Tan^2 \theta$
 - (iii) $\operatorname{Cosec}^2 \theta = 1 + \operatorname{Cot}^2 \theta$
 - (b) Prove that

$$\frac{1}{CotA + TanA} = SinA.CosA$$

(c) Verify that $Tan^2 30^0 + Tan^2 45^0 + Tan^2 60^0 = 41/3$

(4)

- (a) Differentiate with respect to x
- (i) $Y = (x^2+2x)(x^{1/2})$
- (ii) Y = (x+3) $\sqrt{x+1}$
- (b) Evaluate the following integrals

(i)
$$\int_{0}^{2} (x^{2} + x + 1) dx$$
(ii)
$$\int_{0}^{2} X e^{x} dx$$

(ii)
$$\int_{0}^{1} X e^{x} dx$$

(5) (a)

For the above system of forces,

Find the following

- (i) Horizontal component (i.e. $\sum X$)
- (ii)Vertical Component (i.e. ΣY) (You can assume $\sqrt{3} = 1.732$)
- (iii) Hence find the resultant of the above system. (Answer should be nearest 2 decimal places)
- (iv) The angle that resultant make with the horizon.

(b)

A 1000 N weight object is hanging from A. (see above figure) using two string AB and AC connected to two points B and C in horizontal roof. Find T_1 and T_2 the tension of the two strings AB and AC.

(6) (a)

Two objects A and B of masses $10~\mathrm{Kg}$ and $5~\mathrm{Kg}$ are hang over a freely rotated frictionless pulley using a inelastic string . If the system move,

Find

- (i) Acceleration of the system
- (ii) Tension of the string

(b)

Two object of masses of 10Kg and 5Kg are keep as shown in the figure above on a horizontal table using a frictionless freely rotation pulley. Coefficient of friction between table and the 5Kg object, μ = 0.25

Find the

- (i) Acceleration of the system
- (j) Tension T of the string
- (k) Resultant force acting on the pulley due to the tension of the string