THE OPEN UNIVERSITY OF SRI LANKA

Bachelor of Technology (Civil) - Level 5

CEX5233 STRUCTURAL ANALYSIS

FINAL EXAMINATION - 2014/2015

Time Allowed – 3 Hours

Date: 28th August 2015

Time: 09.30 – 12.30 Hrs

This paper consists of Eight (8) questions. Answer any Five (5) questions.

All questions carry equal marks

QUESTION 1

- (i) State **St. Venant's Principle** and briefly explain its importance in structural analysis. (3 Marks)
- (ii) A simply supported beam of length 'l' is subjected to a uniformly distributed load 'w' as shown in Figure Q1. The beam has a rectangular cross section of breath 'b' and depth 'd'.
 - (a) Show that the function given below is a possible stress function.

(5 Marks)

$$\emptyset = \frac{A}{6} \left(l^2 y^3 - x^2 y^3 + \frac{1}{5} y^5 \right) + Bx^2 + Cx^2 y$$

(b) Determine constants A, B and C applying the relevant boundary conditions.

(6 Marks)

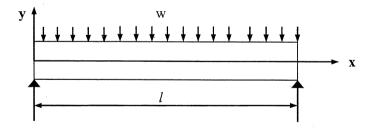


Figure Q1: Simply supported beam

- (iii) Briefly describe the following experimental stress measurement techniques.
 - (a) Strain gauge method

(2 Marks)

(b) Grid method

(2 Marks)

(c) Photoelasticity method

(2 Marks)

QUESTION 2

- (i) List the three conditions that a structure must be satisfied on the point of collapse. (3 Marks)
- (ii) Consider a beam fixed at both ends as shown in Figure Q2(a). Flexural rigidity of the beam is EI.

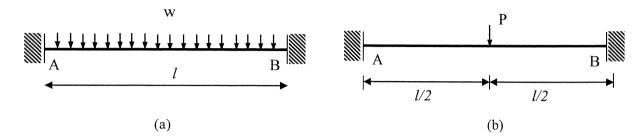


Figure Q2: Fixed supported beam with: (a) a uniformly distributed load; (b) central point load

- a) Determine the ratio of plastic moment (M_p) to yield moment (M_y) for a circular beam with diameter "d". (6 Marks)
- b) Determine the collapse load (w_{ult}) of the beam shown in Figure Q2(a) using the virtual work approach. You can consider that plastic moment of the beam as M_P . (4 Marks)
- c) If the uniformly distributed load is removed and a point load (P) is applied as shown in Figure Q2(b), determine the collapse load (P_{ult}) using the virtual work approach. (4 Marks)
- d) Obtain the ratio of $\frac{w_{ult}l}{P_{ult}}$ and discuss the practical significance of the result. (3 Marks)

QUESTION 3

- (i) General equilibrium equation is written as $\frac{\partial \sigma_{ij}}{\partial x_j} + F_i = 0$ in usual notations. Using this, write down equilibrium equations in three orthogonal directions. (3 Marks)
- (ii) The stress tensor at a point of a particular stress field is given below.

$$\sigma_{ij} = \begin{bmatrix} 3000 & 1000 & 1000 \\ 1000 & 0 & 2000 \\ 1000 & 2000 & 0 \end{bmatrix} N/m^2$$

- a) Determine six independent stress components. (4 Marks)
- b) Determine the stress invariants. (4 Marks)
- c) Determine the principal stresses. (4 Marks)
- d) Determine the directions of principal axes. (5 Marks)

QUESTION 4

- (i) Explain "Degree of Statical Indeterminacy" of a structure using a neat sketch. (4 Marks)
- (ii) Consider the continuous beam shown in Figure Q4. Flexural rigidity of members is equal to EI. Uniformly distributed load (w) is acting on member AB and a concentrated load (wl) is acting on the member CD at E.
 - a) Determine the degree of statical indeterminacy of the beam. (3 Marks)
 - b) Draw a released structure. (3 Marks)
 - c) Determine the flexibility matrix for the drawn released structure. (4 Marks)
 - d) Determine bending moments at B and C. (6 Marks)

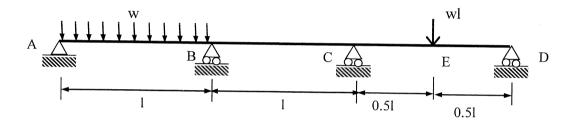
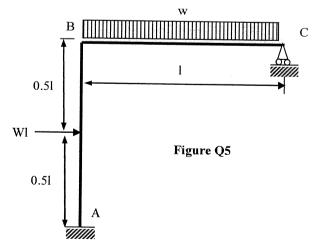



Figure Q4: A continuous beam with a uniformly distributed load and a point load

QUESTION 5

- (i) Explain "Kinematic Indeterminacy" of a structure using a neat sketch. (4 Marks)
- (ii) Consider the frame structure shown in Figure Q5. Flexural rigidities of members AB and BC are the same. Find the free nodal displacements at B using the displacement method. You can neglect the axial deformation. (10 Marks)

(iii) Using results found in (ii), determine the bending moment at A. (6 Marks)

QUESTION 6

(i) Describe conceptual difference between elastic design and plastic design of beams and frames.

(3 Marks)

- (ii) A two-bay frame structure is shown in Figure Q6. Dimensions and plastic moments of the beam are given in the figure.
 - (a) Draw failure mechanisms. (3 Marks)
 - (b) Determine load factors for each failure mechanism. (7 Marks)
 - (c) Determine the most probable failure mechanism. (5 Marks)
 - (d) Explain how you can ensure the unique solution. (2 Marks)

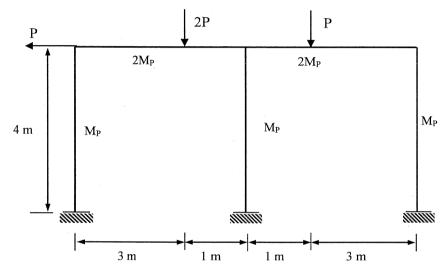


Figure Q6: Two-bay frame structure

QUESTION 7

(i) A rectangular plate of sides a and b is simply supported on the four sides and subjected to a distributed load q = q(x,y) as shown Figure Q7. Show that the lateral deflection of the plate is given by

$$w = \frac{1}{\pi^4 D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_{mn}}{\left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right)^2} Sin \frac{m\pi x}{a} Sin \frac{n\pi y}{b} dx dy$$

where
$$a_{mn} = \frac{4}{ab} \int_{0}^{a} \int_{0}^{b} q . Sin \frac{m\pi x}{a} Sin \frac{n\pi y}{b} dx dy$$
 (14 Marks)

Hint: Express q as a double trigonometric series given by

$$q = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{mn} Sin \frac{m \pi x}{a} Sin \frac{n \pi y}{b}$$

(ii) Using above results, show that the maximum deflection of a simply supported square plate of sides "a x a", loaded with a uniformly distributed load qo is given by

$$w_{\text{max}} = \frac{4q_0 a^4}{\pi^6 D} \tag{6 Marks}$$

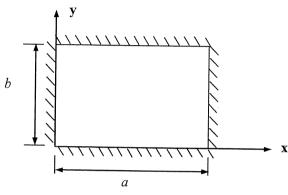


Figure Q7

QUESTION 8

- (i) Briefly describe the following definitions used in the membrane theory of thin shells.
 - (a) Middle surface
 - (b) Normal plane
 - (c) Gaussian curvature

(4 Marks)

(ii) A spherical dome with radius 'a' is supported as shown in Figure Q8 and carries a uniformly distributed load 'w' per unit plan area. The shell thickness is 'h'.

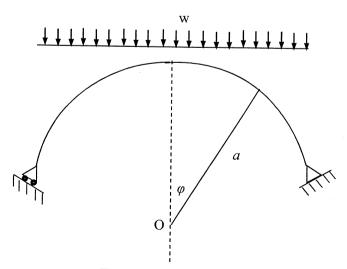
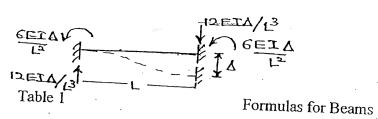



Figure Q8: Spherical dome

- (a) Derive expressions for meridinal and hoop stresses in the spherical dome. (10 Marks)
- (b) Show that the practical limitation of angle φ is 45°, to prevent the development of tensile stresses in the dome. (4 Marks)
- (c) If angle φ is to be increased more than 45°, describe alterations that you would propose in the design of concrete dome. (2 Marks)

Structure	Shear	11		
Set actiff 6	<u>. </u>	Moment (Slope V	Deflection 1
á (Ca	entilever Beam		
6 EB	0	M_o	$\theta_A = \frac{M_o L}{E \Gamma}$	$Y_A = \frac{M_o L^2}{2EI}$
	W	$M_B = -WL$	$\theta_A = -\frac{WL^2}{2EI}$	$Y_A = \frac{WL^3}{3EI}$
* THEFT IS	$S_B = -WL$	$M_B = -\frac{WL^2}{2}$	$\theta_A = -\frac{WL^3}{6EI}$	$Y_A = \frac{WL^4}{8EI}$
A	$S_B = -\frac{WL}{2}$	$M_B = -\frac{WL^2}{6}$	$\theta_A = -\frac{WL^3}{24EI}$	$Y_A = \frac{WL^4}{8EI}$
8	$S_B = -\frac{WL}{2}$	$M_B = -\frac{WL^2}{2}$	$\theta_A = -\frac{WL^3}{8EI}$	$Y_A = \frac{11WL^4}{120EI}$
- No	Propp	ed Cantilever		
E B	$S_A = -\frac{3M_o}{2L}$	$M_B = -\frac{M_o}{2}$	$\theta_A = -\frac{M_o L}{4EI}$	$Y_{\text{max}} = \frac{\dot{M}_o L^2}{27EI}$ $at \ x = \frac{L}{3}$
1w	$S_A = -\frac{3M_o}{2L}$	$M_B = -\frac{3WL}{16}$ $M_c = \frac{5WL}{32}$	$\theta_{A} = \frac{WL^{2}}{32EI}$	$Y_{\text{max}} = 0.00962 \frac{WL^2}{ELI}$ $at x = 0.4471$
	$S_A = \frac{Wb^2}{2L^3}(a+2L)$ $S_B = -\frac{Wa}{2L^3}(3L^2 - a^2)$	$M_B = -\frac{Wab}{L^2} \left(a + \frac{b}{2}\right)$	$\theta_A = \frac{Wab^2}{4EIL}$	$Yo = \frac{Wa^2b^2}{12EIL^3}(3L + \frac{1}{2})^2$
	$S_A = +\frac{3WL}{8}$	$M_B = -\frac{WL^2}{8}$	$\theta_A = \frac{WL^3}{48EI}$	$Y_{\text{max}} = 0.0054 \frac{WL^4}{ELI}$ $at \ x = 0.422$
	$S_A = \frac{WL}{10}$	$M_{\text{totax}} = 0.03WL^2$ $at x = 0.447L$ $M_B = -\frac{WL^2}{15}$	$\theta_A = \frac{WL^3}{120EI}$	$Y_{\text{max}} = 0.00239 \frac{WL^4}{EI}$ $at x = 0.447$
### B	$S_A = \frac{11}{40}$	$M_{\text{max}} = 0.0423WL^{2}$ $at x = 0.329L$ $M_{B} = -\frac{7WL^{2}}{120}$	$\theta_A = \frac{WL^3}{80EI}$	$Y_{\text{max}} = 0.00305 \frac{WL^4}{EI}$ $ulx = 0.402I$

Table 1

Formulas for Beams

Structure	Shear 4	Moment (Slope V	Deflection 1			
Simply supported Beam							
Mo 03	$S_A = -\frac{M_o}{L}$	M_{o}	$\theta_{A} = \frac{M_{o}L}{3EI}$ $\theta_{B} = -\frac{M_{o}L}{6EI}$	$Y_{\text{max}} = 0.062 \frac{M_o L^2}{EI}$ $at \ x = 0.422L$			
A E 82	$S_A = \frac{W}{2}$	$M_o = \frac{WL}{4}$	$\theta_A = -\theta_B = \frac{WL^2}{16EI}$	$Y_c = \frac{WL^3}{48EI}$			
21 BA	$S_A = \frac{Wb}{L}$ $S_B = \frac{Wa}{L}$	$M_o = \frac{Wab}{L}$	$\theta_A = \frac{Wab}{6EIL}(L+b)$ $\theta_B = -\frac{Wab}{6EIL}(L+a)$	$Y_{\sigma} = \frac{VVa^2b^2}{3EIL}$			
	$S_A = \frac{WL}{2}$	$M_c = \frac{WL^2}{8}$	$\theta_A = -\theta_B = \frac{W L^3}{24EI}$	$Y_c = \frac{5WL^4}{384EI}$			
	$S_A = \frac{WL}{6}$ $S_B = \frac{WL}{3}$	$M_{\text{max}} = 0.064 Wl^2$ at $x = 0.577L$	$\theta_A = \frac{7WL^3}{360EI}$ $\theta_B = -\frac{8WL^3}{360EI}$	$Y_{\text{max}} = 0.00652 \frac{WL^4}{EI}$ at $x = 0.519L$			
A CONTRACTOR OF THE PARTY OF TH	$S_A = \frac{WL}{4}$	$M_c = \frac{WL^2}{12}$	$\theta_A = -\theta_B = \frac{5W L^3}{192EI}$	$Y_c = \frac{WL^4}{120EI}$			
Fixed Beams							
A TW B	$S_A = \frac{W}{2}$	$M_c = \frac{WL}{8}$	$\theta_A = \theta_B = 0$	$Y_c = \frac{WL^3}{192EI}$			
A J - 0 - 1 W L 1/2 10	$S_A = \frac{Wb^2}{L^3} (3a+b)$ $S_B = \frac{Wa^2}{L^3} (3b+a)$	$M_A = -\frac{Wab^2}{L^2}$ $M_B = -\frac{Wba^2}{L^2}$	$\theta_A = \theta_B = 0$	$Y_o = \frac{Wa^3b^3}{3EIL^3}$			
vaniante	$S_A = \frac{WL}{2}$	$M_A = M_B = -\frac{WL^2}{12}$	$\theta_A = \theta_B = 0$	$Y_C = \frac{WL^4}{384EI}$			
A JOHN TO BE	$S_A = \frac{3WL}{20}$ $S_B = -\frac{7WL}{20}$	$M_A = -\frac{WL^2}{30}$ $M_B = \frac{WL^2}{20}$	$\theta_A = \theta_B = 0$	$Y_{\text{max}} = 0.00131 \frac{WL^4}{EI}$ at $x = 0.525L$			
A TOTAL B	$S_{A} = \frac{WL}{4}$	$\underline{M}_{\Lambda} = \underline{M}_{\Pi} = -\frac{\text{SIVL}^2}{96^-}$	6 _A - 6 _B = 0	$Y_c = \frac{0.7WL^4}{384EI}$			