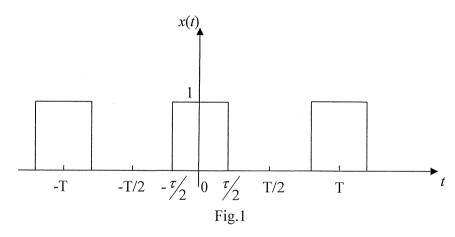


The Open University of Sri Lanka Department of Electrical and Computer Engineering ECX5233- Communication Theory and Systems Final Examination 2014/2015

Time: 0930 - 1230 hrs.


Date: 2015-09 - 11

Answer any FIVE questions

1.

- (a) What is understood by Fourier analysis of a non-sinusoidal repetitive (i) waveform? If the period of the above waveform is T, explain with necessary expressions how the waveform is Fourier analyzed. [3 *marks*]
 - (ii) What information can be retrieved from a signal when Fourier analyzed? [2 *marks*]

(b)

- (i) Express the waveform given in Fig.1 as a trigonometric series.
- (ii) Plot the amplitude spectrum of x(t).

[2 marks]

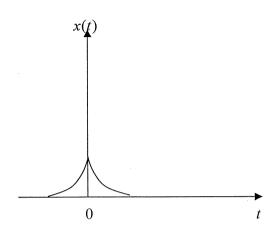
- (iii) Redraw the amplitude spectrum of x(t) for
 - 1. larger value of T

[3 marks]

2. smaller value of τ

and compare with your answer to (ii).

[3 marks]


(iv) x(t) is transmitted through a channel which shows *low-pass*

characteristics. If the received signal is x'(t), draw x'(t) and compare with

x(t). Give reasons any differences.

[3 marks]

2. (a)

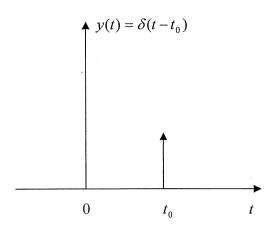
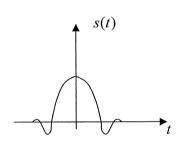



Fig.2.1

(i) Sketch z(t) = x(t) * y(t).

[2 marks]

- (ii) Find $Z(\omega)$ in terms of $X(\omega)$ where $Z(\omega)$ and $X(\omega)$ are the Fourier Transforms of z(t) and x(t) respectively. [2 marks]
- (b) Band limited signal s(t) and its Fourier Transform $S(\omega)$ are shown in Fig.2.2.

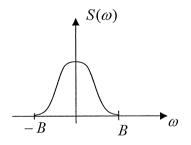
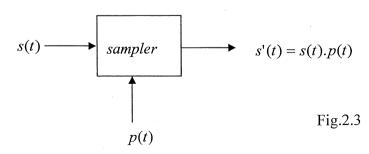
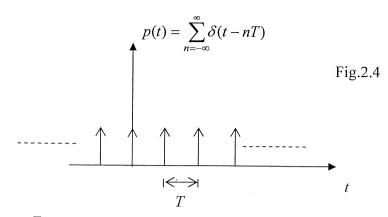
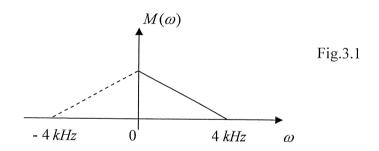




Fig.2.2

s(t) is sampled using the impulse train p(t) [Refer Fig.2.3 and 2.4].



- (i) Express p(t) as a Fourier series and hence find $P(\omega)$. Show that $P(\omega)$ is an impulse train. [4 marks]
- (ii) Using $P(\omega)$ and $S(\omega)$ find the frequency spectrum $S'(\omega)$ of the sampled signal s'(t). [4 marks]
- (iii) Sketch $S'(\omega)$. [2 marks]
- (iv) Using the above sketch decide the maximum possible value for T, if s(t) is to be recovered from s'(t) without any distortions. [6 marks]

3.

(a) A voice signal m(t) has the Fourier Transform $M(\omega)$ shown in Fig.3.1

A sinusoidal carrier having the carrier frequency ω_c is modulated using m(t). The resulting signal x(t) is given by

$$x(t) = \cos(\omega_c t).m(t)$$

(i) State the type of modulation technique used here.

[3 marks]

(ii) Find the frequency spectrum of x(t) and sketch it.

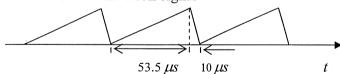
[5 marks]

(iii) Three voice signals $m_1(t)$, $m_2(t)$, $m_3(t)$ have the same spectral distribution given by $M(\omega)$. It is necessary to transmit these 3 signals using the above carrier. Suggest a suitable method and sketch the spectral distribution of the modulated carrier signal. [4 marks]

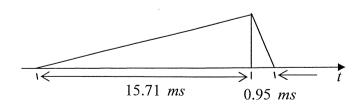
(b) The equation of a modulated carrier is given below:

$$x_c(t) = \cos(\omega_c t + \beta \sin \omega_m t)$$

- (i) State the type of modulation used here. [2 marks]
- (ii) When $\beta \ll 1$ simplify the above expression and find the bandwidth of $x_c(t)$. [6 marks]


4.

- (a) Briefly explain with the help of a diagram how *n* channels are multiplexed using *Time Division Multiplexing (TDM)*. [4 marks]
- (b) Three messages $m_1(t)$, $m_2(t)$ and $m_3(t)$ are time division multiplexed by a sampler which sequentially samples three signals at a frequency f_T . The bandwidths of $m_1(t)$, $m_2(t)$ and $m_3(t)$ are 5 kHz, 7 kHz and 10 kHz respectively. Find the minimum possible value for f_T . Justify your answer. [5 marks]
- (c) A sinusoidal signal is pulse code modulated. The amplitude of the signal is *A* and it is divided into *n* levels.
 - (i) Explain how an error is introduced due to quantization. [3 marks]
 - (ii) If the quantization error e(t) is uniformly distributed between two adjacent amplitude levels, find the average quantization error $e^{2}(t)$. [5 marks]
 - (iii) Find signal to noise ratio $\frac{S}{N}$. [3 marks]


5.

(a) An analogue television image (a frame) consists of two fields. Each field consists of N lines. The horizontal- and vertical deflection signals are given below:

Horizontal deflection signal

Vertical deflection signal

(i) Why is horizontal deflection signal necessary?

[3 *marks*]

What is the function of the vertical deflection signal? (ii)

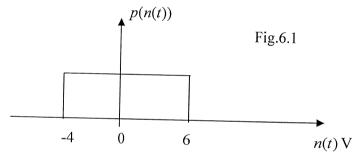
[3 marks]

(iii) Find the value of *N*.

[4 marks]

Find the equivalent number of lines for the vertical deflection fly-back signal. (iv)

[3 *marks*]


- Find the total number of pixels present in an image. [Note that the thickness of (v) each line is one pixel] [4 *marks*]
- (b) When an outdoor TV antenna is installed (in Sri Lanka), all antenna elements are kept horizontal. What is the reason for this? [3 *marks*]

6.

(a) How does channel noise affect an amplitude modulated signal?

[3 marks]

(b) A binary transmitter transmits rectangular pulses. Pulse amplitude can be either +5 V or -5 V. Both the pulses are transmitted with equal probabilities. Due to channel noise n(t), pulse amplitude is modified. The probability density function of n(t) during the data transmission is given below:

At the receiver the amplitude of the received pulse is detected. If the measured value is greater than 2 V the detector decides that +5 V pulse has been transmitted. Otherwise the detector decides that the transmitted pulse was a -5 V pulse.

(i) What is the average noise level in the medium?

[4 marks]

- What is the probability that +5 V pulse is detected as a -5V pulse? (ii) [6 *marks*]
- Find the total power of the noisy received signal. Assume that the data signal (iii) and n(t) are independent and uncorrelated. [7 marks]

7.

(a) (i) What is an eye diagram?

[2 marks]

- You are given a repetitive pulse train with pulse width T and pulse repetition (ii) time 2T. How are going to set up an oscilloscope to observe the eye diagram of this signal? [3 *marks*]
- Eye diagrams of a transmitted signal and its received signal are available. (iii) What conclusions can be drawn from these diagrams regarding the transmission medium? Briefly explain. [3 marks]

- (b) (i) When you watch TV news you listen to 2 news items N_1 and N_2 . N_2 is less probable compared to N_1 . Which news item brings you more information, N_1 or N_2 ? [2 marks]
 - (ii) A source emits 5 messages with probabilities 0.40, 0.35, 0.15, 0.07 and 0.03.
 - 1. Find the entropy of the source.

[3 marks]

- 2. Find the Huffman code for the messages and find the average code length.

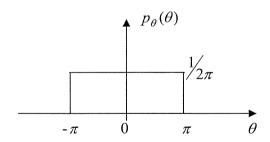
 [5 marks]
- 3. Calculate the code efficiency.

[2 *marks*]

8.

(a) What are the parameters that characterize a random variable?

[3 marks]


- (b) What is a random process? Can the parameters given in (a) be used to characterize a random process? Briefly explain. [4 marks]
- (c) (i) What is a stationary process?

[3 marks]

(ii) What is a wide sense stationary process?

[3 *marks*]

(iii) A random process is given by $Y(t) = 2\cos(\omega t + \theta)$, where ω is a constant and θ is a random variable. The probability density function of θ is given below:

Find whether Y(t) is wide sense stationary.

[7 marks]