The Open University of Sri Lanka Department of Electrical and Computer Engineering ECX5239 – Physical Electronics Final Examination – 2014/2015

Date: 2015-08-09 Time: 0930-1230

This paper has two sections. Answer **five questions** selecting **at least two question from each section**.

Adhere to the usual notations.

Section A

Q1.

(a) Explain the origin of different energy bands corresponding to the electrons in solids.

(5 Marks)

- (b) Compare and contrast the energy band diagrams of metals and semiconductors and insulators. (6 Marks)
- (c) Diamond is having a density of states in the conduction band $2 \times 10^{24} \text{m}^{-3}$ and has a probability of occupancy of these states 5.85×10^{-47} at room temperature. Calculate the conductivity of Diamond at room temperature. $\mu_e = 4500 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$, $\mu_h = 3800 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$. (9 Marks)

Q2.

- (a) Explain the term "mobility" and discuss its dependence on temperature. (5 Marks)
- (b) Silicon is doped with 4×10^{16} donor atoms per cm 3 at room temperature. A Hall device is with dimensions of height 5×10^{-3} cm, width 3×10^{-2} cm and length 8×10^{-2} cm. The current and voltage applied are $250\mu A$ and 100 mV respectively. A magnetic field of 5×10^{-2} Tesla is applied. Calculate,
 - (i) Hall Voltage
 - (ii) Hall field and
 - (iii) Carrier mobility.

(5 x 3 Marks)

Q3.

- (a) With the use of an energy level diagram of an n-type semiconductor explain its ability to conduct a current. (5 Marks)
- (b) The band-gap energy in a semiconductor is usually a function of temperature and can be modeled as $E_g = E_g(0) \frac{k_1 T^2 + k_2 T}{k_2 + T}$. For an unknown semiconductor material $E_g(0) = 1.310$ eV. The parameter values are given as $k_1 = 3.98 \times 10^{-4}$ eV/ $_{\rm K}$ and $k_2 = 541$ K. Find the band-gap energy of the given material for $0 \le T \le 1000$ K in 200 K intervals.

(10 Marks)

(c) Discuss the conduction property of the above unknown material.

(5 Marks)

Q4.

- (a) Why does a capacitance exist in a reverse biased p-n junction and it decrease with increasing reverse bias voltage? (5 Marks)
- (b) Calculate the built in voltage V_0 at room temperature in a uniformly doped silicon p-n junction with doping concentrations $N_A=5\times 10^{17} {\rm cm}^{-3}$ and $N_B=2\times 10^{17} {\rm cm}^{-3}$.

(8 Marks)

(c) Find the temperature which reduces the built in voltage by 2%.

(7 Marks)

Section B

Q5.

- (a) Discuss the assumptions which were made during the derivation of the Ideal Diode Equation. (5 Marks)
- (b) Compare the I-V characteristics of an Ideal Diode and a Practical Diode? (5 Marks)
- (c) What are the special features of a Tunnel Diode? (5 Marks)

(3 Mains

(d) Explain the operation of a Tunnel Diode with the help of energy band diagrams.

(5 Marks)

Q6.

(a) Explain the atomic level behaviour of a PNP bi-polar junction transistor (BJT).

(5 Marks)

- (b) What is saturation in a BJT? Clearly show this region in a $I_C vs V_{CE}$ graph. (5 Marks)
- (c) To switch a PNP transistor from cutoff to saturation, what should happen to the hole density in the base and how is this accomplished? (5 Marks)
- (d) Explain why the collector current decreases when the transistor is operated in the saturation region. (5 Marks)

Q7.

(a) Using atomic level behaviour, clearly explain the operation of a p-channel MOSFET.

(6 Marks)

- (b) Deduce I_D Vs. V_{DS} graph for the p-channel MOSFET from your answer to (a). (5 Marks)
- (c) Comment on the effect of the temperature variation to the saturation point in a MOSFET.

(5 Marks)

(d) Hence produce the $V_{DS,Sat}$ vs T graph for a p-channel MOSFET.

(4 Marks)

Q8.

(a) List and explain three latest technological trends in the global semiconductor industry.

(6 Marks)

(b) What is meant by *hazards* in the semiconductor industry?

(3 Marks)

(c) How can you minimize these *hazards*? Explain.

(6 Marks)

(d) Greener Production is a widely discussed topic which is relevant to the semiconductor industry too. How does this concept become relevant to the Sri Lankan semiconductor industry? (5 Marks)