The Open University of Sri Lanka Faculty of Engineering Technology Department of Civil Engineering

Study Programme

: Bachelor of Technology Honours in Engineering

Name of the Examination

: Final Examination

Course Code and Title

: CVX6533/CEX6233

Environmental Engineering

Academic Year

: 2018/19

Date

: 30th January 2019

Time : 0930-1230 hrs

General Instructions

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of Seven (7) questions in Five (5) pages.
- 3. Answer any Five (5) questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. Relevant charts/ codes are provided.
- 6. This is a Closed Book Test (CBT).
- 7. Answers should be in clear hand writing.
- 8. Do not use Red colour pen.

Question 1.

(a) The manufacturing processes of industries indirectly or directly release toxic and harmful substances which find a way to the soils, rivers, lakes and oceans leading to biomagnifications.

(i) What is meant by biomagnification?

[02 marks]

(ii) Explain the process of biomagnification in a water body.

[03 marks]

(iii) Discuss two impacts due to biomagnification in rivers and lakes.

[03 marks]

(b) Water borne diseases are serious issue in many upcountry estate population.

(i) What would be the main cause of pathogenic pollution of water?

[02 marks]

(ii) How 'Escherichia coli (E. coli)'is fit for use as an indicator organism to investigate presence of pathogenic bacteria in water? Explain giving the reasons. [04 mark

(c) The following data are from total solids and total volatile solids tests on a wastewater sludge sample.

Weight of empty dish

65.631g

Weight of dish and sludge sample

= 134.745g

Weight of dish and dry sludge solids

= 70.237g

Weight of dish plus ignited solids

= 66.328g

Calculate,

(i) the weight of total solids and weight total volatile solids.

[03 marks]

(ii) the percentage of total solids and percentage of total volatile solids.

[03 marks]

Question 2.

- (a) (i) Define effective size and uniformity coefficient and explain their use in designing rapid sand filter. [02 marks]
 - (ii) Determine the number of rapid sand filters to treat a flow rate of 75.7 x 10^3 m³/d if the design loading rate is 300 m³/d.m². The maximum dimension is 7.5m and the length to width ratio is 1.2:1. [05 marks]
- (b) (i) What is the significance of alkalinity in coagulation?

[02 marks]

(ii) Two parallel flocculation basins are to be used to treat a water flow of 0.150m³/s. if the design detention time 20 minutes what is the volume of each tank.

[04 marks]

- (iii) If the coagulant dosage is 12mg/L, estimate the amount of coagulant to be used per day in this treatment system. [03 marks]
- (c) (i) Why disinfectant that has a residual is preferable to one that does not?

[02 marks]

(ii) Explain why UV disinfection has become a popular alternative to chlorine disinfection.

[02 marks]

Question 3.

(a) (i) What is meant by 'self-purification capacity' of a river? [01 marks]

(ii) What physical parameters effect on self-purification of capacity of a river.

[02 marks]

(b) A large stream has a reoxygenation constant of 0.4 d⁻¹ and a velocity of 0.55m/s. At the point which an organic pollutant discharged, it is saturated with oxygen at 10 mg/L (at t=0, D_a=0). Below the outfall the ultimate demand for oxygen is found to be 20 mg/L, and the deoxygenation constant is 0.2 d⁻¹. Use the Streeter -Phelps deficit equation with usual notations. Provide the assumption that you made.

$$D = \frac{k_d L_0}{k_r - k_d} (e^{-k_d t} - e^{-k_r t}) + D_0(e^{-k_r t})$$

$$t_c = \frac{1}{k_r - k_d} \ln \left[\frac{k_r}{k_d} \left(1 - D_0 \frac{k_r - k_d}{k_d L_0} \right) \right]$$

(i) What is the dissolved oxygen at 42.5 km downstream.

[04 marks]

(ii) Estimate the critical point in a DO sag curve.

[04 marks]

(iii) Would you expect the critical point to move upstream (toward the discharge point), downstream, or remain in the same place, if the wastewater is treated?

[02 marks]

(c) (i) Describe type of oxygen-demanding wastes and discuss the effect of oxygen-demanding wastes on rivers. [03 marks]

(ii) What factors affect the amount of DO available in a river?

[02 marks]

(iii) Eliminating rapids by dredging or damming a river can have a severe impact on DO. Explain the reasons and mention how this can be overcome in a river. [02 marks]

Question 4.

- (i) Explain when a design engineer would select a rectangular clarifier rather than a circular secondaryclarifier and what, if any, negative impacts this may have on performance.[03 marks]
 - (ii) Two activated sludge aeration tanks at Raddolugama are operated in series. Each tank has the following dimensions: 7.0 m wide by 30.0 m long by 4.3 m effective liquid depth. The plant operating parameters are as follows:

Flow = $0.0796 \text{ m}^3/\text{s}$

Soluble BOD₅ after primary settling =130 mg/L

MLVSS =1500 mg/L

MLSS =1.40 (MLVSS)

Settled sludge volume after 30 min =230.0 mL/L

Determine the following:

(i) Aeration period	[03 marks]
(ii) F/M ratio	[03 marks]
(iii) Sludge Volume Index	[03 marks]

(b) The town in western Province has been directed to upgrade its primary WWTP to a secondary plant that can meet an effluent standard of 25.0 mg/L BOD₅ and 30 mg/L suspended solids. They have selected a completely mixed activated sludge system for the upgrade. The existing primary treatment plant has a flow rate of 2,506 m³/d. The effluent from the primary tank has a BOD₅ of 240 mg/L. Using the following

The effluent from the primary tank has a BOD_5 of 240 mg/L. Using the following assumptions, estimate the required volume of the aeration tank:

Assumptions:

- BOD₅ of the effluent suspended solids is 70% of the allowable suspended solids concentration.
- Growth constant values are estimated to be: $Ks = 100 \text{ mg/L BOD}_5$; $Kd = 0.025 \text{ d}^{-1}$; $M = 10 \text{ d}^{-1}$; $Y = 0.8 \text{ mg VSS/mg BOD}_5$ removed.
- The design MLVSS is 3,000 mg/L.

[06 marks]

(c) Why advanced wastewater treatment is needed? What methods/processes can be used for advanced wastewater treatment? [02 marks]

Question 5.

- (a) (i) What is meant by 'e-waste'? Why e-waste is considered as a problem to the human and environment. Discuss. [03 marks]
 - (ii) E-waste management is a challenging aspect in Sri Lanka. Why? Explain briefly.

[03 marks]

- (b) (i) Solid waste with a density of 110 kg/m³ is spread in a 0.5m layer a landfill at Kirindiwela. If a steel wheeled compactor can achieve a density of 400 kg/m³, what thickness of waste will be achieved. [04 marks]
 - (ii) Estimate the weekly volume of solid waste being delivered to a municipal landfill if the average solid waste generation rate is 2.6 kg/person.d, the population is 17200, and the density as delivered is 122 kg/m³. [04 marks]
- (c) (i) How landfills or open dumps contribute to the global warming. Discuss briefly.

 [03 marks]
 - (ii) What is meant by calorific value or heating value of municipal solid waste and how it help for MSW management. [03 marks]

Question 6.

(a) (i) There are three fundamental ways in which noise can be controlled. List them.

[01 marks]

(ii) What are the merits of having a noise map when developing a mega city?

[02 marks]

- (b) (i) List three potential chronic health effects of air pollution. [01 marks]
 - (ii) Discuss the photochemistry of Ozone in the upper atmosphere using the pertinent chemical reactions and the effect of chlorofluorocarbons on these reactions.

[03 marks]

(ii) What is the chemical composition of CFC-114?

[02 marks]

(iv) It is identified that NO_2 concentration in a city is about of 0.25 ppm. Express the equivalent concentration of NO_2 in $\mu g/m^3$ at 25°C and 1 atm. Molecular weights of N and O are 14 and 16 respectively. [03 marks]

(c) The town of Rathnapura discharges 0.126 m³/s of treated wastewater into Kelani River. The BOD₅ of the wastewater is 34 mg/L. Kelani River has a 10-year, 7-day low flow of 0.126 m³/s. Upstream of the wastewater outfall from Ratnapura, the BOD₅ is 1.2 mg/L. The BOD rate constants *k* are 0.222 d⁻¹ and 0.090 d⁻¹ for the wastewater and river respectively. The temperature of both the river and the municipal wastewater is 28°C. Calculate the initial ultimate BOD after mixing. [08 marks]

Question 7.

The Central Expressway, which is currently under construction, is expected to reduce congestion on the existing roads to Colombo from Kandy and Kurunegala. Stage 1 of the project – from Kadawatha to Meerigama – is expected to be completed in 2019. There will be two interchanges at Gampaha and Veyangoda.

- (a) What alternatives should have been considered before taking the decision to construct a separate expressway? Justify your answers. [02 marks]
- (b) Compare the advantages and disadvantages of constructing an expressway to the alternatives listed in section (a). [03 marks]
- (c) The expressway could have been constructed as an elevated highway or on an embankment. Compare the advantages and disadvantages of these two methods.

[03 marks]

- (d) List and discuss the factors to be considered when deciding on the number and locations of highway interchanges. [03 marks]
- (e) List the three most significant environmental impacts of locating a highway interchange at a particular location. [03 marks]
- (f) Propose and justify mitigatory measures for the three impacts identified in section (e).

 [03 marks]
- (g) Propose monitoring measures for the three impacts identified in section (e).

[03 marks]