

The Open University of Sri Lanka Faculty of Engineering Technology Department of Electrical & Computer Engineering

Study Programme : Bachelor of Technology Honours in Engineering

Name of the Examination : Final Examination

Course Code and Title : EEX6534 / ECX6234 Digital Signal Processing

Academic Year : 2017/18

Date : 28th January 2019 Time : 9.30-12.30hrs

Duration : 3 hours

General Instructions

1. Read all instructions carefully before answering the questions.

2. This question paper consists of Seven (7) questions in Three (3) pages.

- 3. Answer any Five (5) questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. Relevant formulae are provided in Page 4.
- 6. This is a Closed Book Test (CBT).
- 7. Answers should be in clear hand writing.
- 8. Do not use Red colour pens.

[3]

- Q1. (a) Consider the signal $x(t) = 4\cos(100\pi t)\cos(200\pi t)$. If the signal x(t) is sampled with a sampling frequency f_s Hz, express the condition that should be satisfied by the sampling frequency f_s in order to ensure the perfect recovery of x(t) from the sampled signal. (Hint: You may use the trigonometric identity $2\cos(\theta)\cos(\phi) = \cos(\theta + \phi) + \cos(\theta \phi)$.) [4]
 - (b) Consider the two signals $x_1(t) = 2\cos(40\pi t)$ and $x_2(t) = 2\cos(70\pi t)$.
 - i. If the signals $x_1(t)$ and $x_2(t)$ are sampled with 100π rad/s, find the digital angular frequencies (measured in rad/sample) of the corresponding discrete-time signals $x_1(n)$ and $x_2(n)$. [4]
 - ii. Consider the signal x[n] defined by $x[n] = x_1[n] + x_2[n]$. Sketch the frequency spectrum $X(e^{j\omega})$ of x[n] in the range $-3\pi \le \omega \le 3\pi$, where ω is the digital angular frequency. [8]
 - iii. Assume that the signal x[n] is applied to an ideal reconstruction filter of which the output is $\hat{x}(t) = A_1 \cos(\Omega_1 t) + A_2 \cos(\Omega_2 t)$, where A_1 , A_2 , Ω_1 , and Ω_2 are constants. What are the values of analog angular frequencies Ω_1 and Ω_2 ? [4]
- Q2. (a) Briefly explain the linearity and the time-invariance properties of a system.
 - (b) State whether the systems described by the following difference equations are linear and timeinvariant.
 [4]
 - i. y[n] = 3x[n+1] + 2x[n] + x[n-1]
 - ii. y[n] = nx[n] + x[n-4]
 - (c) Determine whether the systems described by the following difference equations are causal. [3]
 - i. y[n] = 3x[n] + 2x[n-1] + x[n-2]
 - ii. y[n] = x[3n] + x[n-4]
 - iii. $y[n] = x[n^2] + x[n-2]$
 - (d) Consider an LTI system with the impulse response h[n] and the input signal x[n] as shown in Figure Q2(d). Find the output signal y[n] for $\forall n \in \mathbb{Z}$. [10]

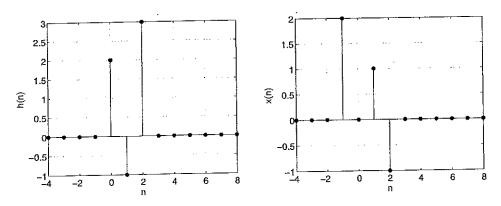


Figure Q2(d): The impulse response and the input signal for Q2(d).

- Q3. (a) Consider the signal $x[n] = a^n u[n]$, where a is a constant.
 - i. Find the z-transform, with the region of convergence (ROC), of the signal x[n] using the first principles. [4]
 - ii. Sketch the ROC in the complex plane.

[1]

(b) Using the answer obtained for Q3(a) and the relevant properties of the z-transform, find the z-transform (with the ROC) of the signal [5]

 $y[n] = \left(\frac{1}{2}\right)^n u[n] + \left(\frac{-1}{3}\right)^n u[n].$

(c) Consider an LTI system having the transfer function

$$H(z) = \frac{1}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{4}z^{-1}\right)}, \qquad |z| > \frac{1}{2}.$$

Using the answer obtained for Q3(a) and the relevant properties of the z-transform, find the output signal y[n] of the system if the input signal is u[n]. [10]

- **Q4.** Consider the signal $x[n] = a^n u[n]$, where a is a real-valued constant and u[n] is the discrete-time unit-step function.
 - (a) For the case |a| < 1, derive the discrete-time Fourier transform (DTFT) $X(e^{j\omega})$ of x[n] using the first principles.
 - (b) Using the answer obtained for Q4(a), determine $|X(e^{j\omega})|$ and $\angle X(e^{j\omega})$. [5]
 - (c) For the case $|a| \ge 1$, can the DTFT $X(e^{j\omega})$ of x[n] be derived? Justify your answer. [4]
 - (d) Another signal y(n) is defined as $y(n) = a^{|n|}$. Express the DTFT $Y(e^{j\omega})$ in terms of $X(e^{j\omega})$. [6]
- Q5. (a) Compute the discrete Fourier transform (DFT) of each of the following discrete-time signals having a finite-length, i.e., $0 \le n \le (N-1)$, where N is even:
 - i. $x[n] = \delta[n n_0]$, where n_0 is a constant, and $0 \le n_0 \le (N 1)$,
 - ii. $x[n] = a^n$,
 - iii. $y[n] = e^{j\omega_0 n}$, where ω_0 is a constant, and $-\pi \le \omega_0 < \pi$.

[12]

(b) A discrete-time system is characterized by the transfer function

$$H(z) = \frac{z^4}{4z^4 - 2z^3 + 3z^2 - z + 2}.$$

Determine the stability of the system using the Jury-Marden criterion.

[8]

EEX 6534

- Q6. (a) The coefficients of an Nth order (length (N+1), where N is even) FIR filter H(z) is denoted as h[n], $-N/2 \le n \le N/2$. Express the condition that should be satisfied by the coefficients h[n] of the FIR filter in order to have a zero-phase response.
 - (b) The ideal frequency response of a zero-phase lowpass filter H(z) is specified as

$$H_I(e^{j\omega}) = \begin{cases} 1, & \text{for } |\omega| \le \omega_c \\ 0, & \text{for } \omega_c < |\omega| \le \pi, \end{cases}$$

where $0 < \omega_c < \pi$ is the cutoff frequency of the lowpass filter. Derive a closed-form expression for the infinite-extent ideal impulse response $h_I[n]$ using the first principles. [7]

(c) A finite-extent impulse response h[n] of length (N+1) can be obtained by multiplying $h_I[n]$ with an appropriate window function w[n] of length (N+1). Obtain the finite-extent impulse response h[n] (or the coefficients) of a 6th order zero-phase FIR lowpass filter having a cutoff frequency 0.3π rad/sample. Use the Hamming window as the window function. The Hamming window of length (N+1) is defined as

$$w[n] = \begin{cases} 0.54 + 0.46 \cos\left(\frac{2\pi n}{N}\right), & \text{for } |n| \le \frac{N}{2} \\ 0, & \text{otherwise.} \end{cases}$$

Provide your answer in a table having columns for $h_I[n]$, w[n] and h[n] for required n. [7]

- (d) Given that a zero-phase FIR filter is noncausal, how is such a filter converted to a causal filter without changing the magnitude response of the filter? [3]
- Q7. A continuous-time elliptic lowpass filter $H_c(s)$ having the transfer function

$$H_c(s) = \frac{0.07(s^2 + 2.58)}{(s + 0.38)(s^2 + 0.31s + 0.51)}$$

is employed to design a discrete-time IIR lowpass filter H(z) using the bilinear transform method. The passband edge Ω_p of $H_c(s)$ is 0.71 rad/s, and the sampling frequency is 10π rad/s. Furthermore, H(z) is realized as a *cascade structure* of a first-order section and a second-order section.

(a) Derive the transfer function H(z).

[10]

(b) Determine the passband edge ω_p of H(z).

[3]

(c) Draw the realization of H(z) as a cascade structure. Note that the first-order and the second-order sections should be realized using the *direct form II* realizations. [7]

EEX 6534

Useful Formulae

• Discrete-Time Fourier Transform (DTFT) of x[n]

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

• z-Transform of x[n]

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

• N-point DFT of x[n]

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi k\pi}{N}}, \ 0 \le k \le N-1$$

• N-point Inverse DFT (IDFT) of X[k]

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi kn}{N}}, \, 0 \le n \le N-1$$

• Bilinear transform

$$s = \frac{2}{T} \left(\frac{z - 1}{z + 1} \right),$$

where T is the sampling period.

END OF THE PAPER