

The Open University of Sri Lanka Faculty of Engineering Technology Department of Electrical & Computer Engineering

Study Programme

: Bachelor of Technology Honours in Engineering

Name of the Examination

: Final Examination

Course Code and Title

: EEX4530 Fault Diagnosis in Electronic

Circuits / ECX4230

Academic Year

: 2017/18

Date

Time

: 18th January 2019

: 0930-1230hrs

General Instructions

1. Read all instructions carefully before answering the questions.

- 2. This question paper consists of Eight (8) questions in Eight (08) pages.
- 3. Answer any Five (5) questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. This is a Closed Book Test (CBT).
- 6. Answers should be in clear hand writing.
- 7. Do not use Red colour pen.

1. A single stage amplifier circuit is shown in figure 1. $I_{DSS} = 10 \text{mA}$, and $V_{gs(off)} = -3 \text{V}$.

Figure 1

Calculate,

i. Gate voltage [02 Marks] ii. Drain current [02 Marks] iii. Gate source voltage [02 Marks] [08 Marks]

b. Calculate the test point voltages at no signal.

c. Find the type of the fault with the faulty component/s in each case giving reason. [06 Marks]

Case	T.P 1(V)	T.P 2(V)	T.P 3(V)	Output
A	5	7.91	5.81	Low gain
В	5	15	0	No output
C	5	7.91	5.81	No output

2. A transistor amplifier is shown in figure 2.

The drain current of the transistor Tr1 is given by $I_D = 0.3(V_{GS} - V_P)^2$, where I_D is in mA, V_{GS} is in volts and $V_{P} = -4V$. You may assume usual notation. The current gain of the transistor Tr2 can be considered as high.

- a. Calculate the current I_F and then find out the voltages at the test points when no signal is applied. Do not assume maximum swing at the output.
- b. Find out the amplitude of the input signal that will produce an output amplitude of 1V at 1 kHz. What is the phase relationship between the input and the output? [04 Marks]

c. The test point voltages under fault conditions are shown in the following table. Identify the faulty component/s and fault type with reasons. [08 Marks]

Case	1	2	3	4	5	Output response
A	0	11.40	6.000	0.270	0.261	No output
B	0	11.40	11.80	3.139	0.201	Output clipped
	0	11.40	0.012	3.077	0.197	No output
D	0	12.00	0	0	0	No output

3.

- a. Draw a block diagram of an oscillator circuit. You should clearly show all the sub modules in your answer. [04 Marks]
- b. The circuit of a Wien bridge oscillator producing sine wave output is shown in figure 3. All transistors are high gain, and RT is a thermistor.
 - i. Identify the components, which determines the output frequency.

[01 Marks]

- ii. What is the phase relationship of the signal at test point 5, with the signal at the base of Tr1? Also state the function of RT. [02 Marks]
- iii. Estimate the frequency range of this oscillator.

[02 Mark]

iv. Calculate the DC voltages at test points.

[03 Marks]

Page 2 of 8

v. Following table shows the DC voltages at test points, under faulty conditions. Identify the faulty components indicating the relevant reasons.

[08 Marks]

Fault	1	2	3	4	5	output
A	1.9	0	9.5	8.9	9.0	No output
В	1.9	0.7	6.7	6.5	15.0	No output
C	0	. 0	9.5	8.9	9.0	No output
D	1.9	0.7	6.6	6.0	10.9	Square wave

- 4. A Schmitt trigger circuit, used in a signal processing system is shown in figure 4 (a).
 - a. Calculate the input threshold voltages of this circuit. Find the test point voltages when the input is given 4V and 1V respectively. [06 Marks]
 - b. What is the hysteresis of this circuit?

[02 Marks]

- c. The shown in figure 4 (b) is given as an input to the circuit. Sketch the output waveform, clearly showing voltage and time values. [04 Marks]
- d. Under fault conditions, this circuit is tested with a multi-meter and the voltages observed on the test points are given below. Identify the faulty component/s giving fault type, with reasons. [08 marks]

Case	input	TP1	TP2	TP3	TP4
A	0.00	12.00	0.00	0.00	12.00
В	0.00	7.96	0.23	0.83	12.00
C	4.00	8.52	1.80	2.40	3.33
D	4.00	3.60	3.40	3.60	12.00

(b)

Figure 4

Page 3 of 8

5. Consider the DC voltage regulator circuit shown in Figure 5.

Assume that the current gain of Tr2 and V_{CE} (min) is 30 and 1V respectively. The transistor Tr1 is of high gain type.

- (i) Find a suitable value for R4 to obtain maximum guaranteed output voltage and calculate it for this value of R4. [04 Marks]
- (ii) Find the minimum output voltage.

[01 Mark]

(iii) Calculate the guaranteed maximum load current.

[02 Marks]

(iv) Calculate the maximum power dissipation in Tr2, R2 and ZD1.

[03 Marks]

- (v) Show the implementation of an active current limit circuit for this power supply and find the component values for the worst case of a maximum load current. [02 Marks]
- (vi) Following table shows the test point voltages under fault conditions.

 Determine the faulty component/s with fault type giving reasons. Assume

 VR1 is set for the maximum output voltage. [08 Marks]

Case	1	2	3	4	5	Output
A	12.00	4.700	11.82	6.140	11.22	No regulation
В	12.00	4.700	10.28	5.300	9.680	Max. load current = 0.9A
	12.00	4.700	5.900	5.300	5.300	No regulation
D	12.00	4.700	12.00	0	0	No output

6. Consider the circuit shown in figure 6.

A narrow width pulse train of 250 Hz frequency and +2V height is applied to the input.

a. Draw the waveforms at each test point to a common scale with the input.

[04 Marks]

b. Calculate the parameters of the output waveform.

[04 Marks]

c. Calculate the voltages at test points, when no signal is applied.

[04 Marks]

d. The output is not available under the following fault conditions. State which component is faulty with fault type giving reasons. [08 Marks]

Case	TP1	TP2	TP3	TP4
P	0.2	6.2	0.7	0.2
Q	0.6	0.2	0.7	10
R	0.2	0.6	0.7	0.2
S	0.2	0	0.7	0.2

- 7. Consider the amplifier, shown in figure 7. The transistors Q1, Q2 and Q3 are of high gain type, while the current gain of Q4 is 50.
 - a. Calculate Ix and the test point voltages at no signal. Do not assume any voltage for a test point.
 [08 Marks]

- b. A sine wave signal of 1 kHz with 145mV amplitude is applied to the input. Sketch the output signal with the input to a common time scale. Mark the time and voltage values, where necessary. [04 Marks]
- c. Following table shows the test point voltages under faulty conditions. Identify the faulty component/s with fault type, giving reasons. [08 Marks]

Case	1	2	3	4	5	6
A	4.56	0	-7.30	-12.0	4.00	3.96
В	0.50	-0.60	-7.30	-7.90	12.0	0
C	0.70	-0.60	-7.30	-7.90	12.0	0.10
	0.70	-0.60	-7.30	-7.90	0	0.10

8. (a) State the use and limitations of a logic probe.

[02 Marks]

(b) Consider the digital circuit shown in figure 8.

Figure 8

- (i) Show the operation of the components IC1, IC4 and IC5, with the aid of tables, using inputs and outputs. [04 Marks]
- (ii) After 'S' is pressed, positive pulses of 5V are given to the input. Tabulate the binary states of A, B, C, D and the output of IC5 with each clock pulse.

[02 Marks]

(iii) State the faulty component/s for the following fault cases, giving fault type with reasons. [06 Marks]

Case	output of IC5
A	2, 3, 2, 3, 2, 3,
В	4, 5, 4, 5, 4, 5,
C	0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2,

- (iv) In a fault case, a logic probe blinks at A, B and C while the output of IC5 is always '3'. State how the logic probe can be used further to determine the exact faulty component. [04 Marks]
- (v) If the resistor R is open, explain the operation of the circuit. [02 Marks]